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Background picture

® Facets are inclusion-maximal
faces of a regular CW-complex.

e Pure: a regular CW-complex with
facets of same dimension.
e Star of a face o: the smallest

subcomplex containing all facets
that contain o.

link(v, K) star(v, K)

e link(o, K) = {7 € star(o,K) : TNo = 0} if K is a simplicial
complex. If K is a regular CW-complex: “spherical link”

e Triangulation of a smooth d-manifold M: a d-dim simplicial
complex whose underlying space is homeomorphic to M.

e d-sphere: A triangulation of the d-dimensional sphere.

* d-pseudomanifold: a d-dim pure simplicial regular
CW-complex where each (d — 1)-cell is in < 2 facets.
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Big picture

Two triangulations are equivalent <= same face poset.
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Big picture
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Steinitz’s theorem
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(d + 1)-polytopes [Goodman—Pollack 1986, Alon 1986].

Due to discrete quantum gravity (which cheers for ‘yes’ —

cf. Riccardo Martini’s talk yesterday) we count triangulations
with respect to the number N of facets.

Gromov’s question (2000)

How many 3-spheres with N tetrahedra, exponentially many?

B.—Ziegler (2011)

In any fixed dimension, there are exponentially many simplicial
polytopes. (Or more generally, simplicial shellable spheres.)
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Too big picture
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Too big picture

Surfaces and Pseudomanifolds are too many.

Theorem [Folklore]

There are g! triangulations of the genus-g surface, with 16g

triangles each. Hence, there are more than exponentially many

surfaces with N triangles.

Corollary (via coning)

There are more than exponentially many 3-pseudomanifolds

with N tetrahedra.
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A picture dear to me: LC Manifolds

¢ LC manifolds are those
obtainable from a tree of
d-simplices by recursively gluing
two adjacent boundary facets.

e Mogami manifolds: ... by gluing
incident boundary facets.

e All shellable (or constructible)
spheres are LC.

Theorem (Durhuus—Jonsson 1995; B.—Ziegler 2011)
LC triangulations of d-manifolds with N facets are at most 29N,

Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with N facets are
exponentially many.
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Later pictures

Classes with proven exponential size:

e (d=2) Surfaces with
fixed genus (Tutte 1962)
e (d=3) Causal triangula-
tions (Durhuus—Jonsson 2014)

¢ (any d) Bounded geometry,
a-la-Cheeger (Adiprasito-B. 2020)

¢ Triangulations with bounded discrete Morse vector —
contains all classes above, and also LC triangulations, but
not Mogami triangulations (Benedetti 2012)

B.—Ziegler (2011)
A d-manifold without boundary is LC if and only if it admits a
discrete Morse vector that ends in ...0, 1).
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Turning my favorite picture into a movie: t-LC

Let t be an integer ranging from 1 to d.
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Let t be an integer ranging from 1 to d.

Definition (B.—Pavelka 2023)

t-LC d-manifolds are those obtainable from a tree of
d-simplices by recursively gluing two boundary facets whose
intersection has dimension atleastd — 1 — t.

e 1-LC the same as LC
e 1-|ICc2LCc.--cd-LC

e All connected d-manifolds are
a-LC

Main theorem (B.—Pavelka 2023)
2-LC triangulations of d-manifolds with N facets are still

3
exponentially many: they are at most 2% N,
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Special effects: Coning
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Special effects: Coning

Theorem (B.—Pavelka 2023)
Cones over t-LC d-pseudomanifolds are t-LC.

= 2-LC d-pseudomanifolds more than exponentially many!
(just by looking at cones over surfaces)

e Unlike the B.-Ziegler result, our result really uses the
manifold assumption: without it, it’s false.

Crucial facts for our proof

e Links of (d — 3)-faces in a manifold are homeomorphic to
S? or a disk.

¢ Planar gluings lead to count by Catalan numbers.

e Qur proof makes precise and extends to all dimension the
work for d = 3 by Mogami.
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Another famous picture: Cohen-Macaulayness

¢ A d-dimensional complex C is called
[homotopy-]Cohen—Macaulay if for any face F, for all
i < dimlink(F, C), [7;(link(F, C)) = 0 and]
H;(link(F, C)) = 0.
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- every simplex, and every 0-complex, is constructible;

- a d-dim pure simplicial complex C that is not a simplex is
constructible if and only if it can be written as C = C; U C,,
where C; and C, are constructible d-complexes, and
Ci1 N Cy is a pure constructible (d — 1)-complex.

¢ Constructible complexes are homotopy-Cohen—Macaulay
(Hochster 1972).

e Constructible manifolds are LC. (B.—Ziegler 2011)
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. And here is another movie!

Definition (B.—Pavelka 2023)

Let 0 < t < d be integers. t-constructible d-dimensional
simplicial complexes defined inductively:

e every simplex is t-constructible;

* a 1-dimensional complex is t-constructible
if connected;

* a d-dimensional pure simplicial complex
C that is not a simplex is f-constructible if
C = Cy U C», where Cy and C are
t-constructible d-complexes, and C; N Co
is a pure (d — 1)-complex whose
(d — t)-skeleton is constructible.
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Final picture
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