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Background picture

• Facets are inclusion-maximal
faces of a regular CW-complex.
• Pure: a regular CW-complex with

facets of same dimension.
• Star of a face σ: the smallest

subcomplex containing all facets
that contain σ.

• link(σ,K ) = {τ ∈ star(σ,K ) : τ ∩ σ = ∅} if K is a simplicial
complex. If K is a regular CW-complex: “spherical link”
• Triangulation of a smooth d-manifold M: a d-dim simplicial

complex whose underlying space is homeomorphic to M.
• d-sphere: A triangulation of the d-dimensional sphere.
• d-pseudomanifold: a d-dim pure simplicial regular

CW-complex where each (d − 1)-cell is in ≤ 2 facets.
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Big picture

Two triangulations are equivalent⇐⇒ same face poset.

Steinitz’s theorem
{2-spheres} = { boundaries of simplicial 3-dim polytopes}.

For d ≥ 3, there are way more d-spheres [Pfeifle–Ziegler 2003,
Nevo–Santos–Wilson 2016, Novik–Zheng 2022] than
(d + 1)-polytopes [Goodman–Pollack 1986, Alon 1986].
Due to discrete quantum gravity (which cheers for ‘yes’ –
cf. Riccardo Martini’s talk yesterday) we count triangulations
with respect to the number N of facets.

Gromov’s question (2000)
How many 3-spheres with N tetrahedra, exponentially many?

B.–Ziegler (2011)
In any fixed dimension, there are exponentially many simplicial
polytopes. (Or more generally, simplicial shellable spheres.)
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Too big picture

Surfaces and Pseudomanifolds are too many.

Theorem [Folklore]
There are g! triangulations of the genus-g surface, with 16g
triangles each. Hence, there are more than exponentially many
surfaces with N triangles.

Corollary (via coning)
There are more than exponentially many 3-pseudomanifolds
with N tetrahedra.
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A picture dear to me: LC Manifolds

• LC manifolds are those
obtainable from a tree of
d-simplices by recursively gluing
two adjacent boundary facets.
• Mogami manifolds: ... by gluing

incident boundary facets.
• All shellable (or constructible)

spheres are LC.

Theorem (Durhuus–Jonsson 1995; B.–Ziegler 2011)

LC triangulations of d-manifolds with N facets are at most 2d2N .

Theorem (Mogami 1995)
Mogami triangulations of 3-manifolds with N facets are
exponentially many.
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Later pictures

Classes with proven exponential size:

• (d=2) Surfaces with
fixed genus (Tutte 1962)

• (d=3) Causal triangula-
tions (Durhuus–Jonsson 2014)

• (any d) Bounded geometry,
á-la-Cheeger (Adiprasito–B. 2020)

• Triangulations with bounded discrete Morse vector –
contains all classes above, and also LC triangulations, but
not Mogami triangulations (Benedetti 2012)

B.–Ziegler (2011)

A d-manifold without boundary is LC if and only if it admits a
discrete Morse vector that ends in ...0,1).
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Turning my favorite picture into a movie: t-LC

Let t be an integer ranging from 1 to d .

Definition (B.–Pavelka 2023)
t-LC d-manifolds are those obtainable from a tree of
d-simplices by recursively gluing two boundary facets whose
intersection has dimension at least d − 1− t .

• 1-LC the same as LC
• 1-LC ⊂ 2-LC ⊂ · · · ⊂ d-LC
• All connected d-manifolds are

d-LC

Main theorem (B.–Pavelka 2023)
2-LC triangulations of d-manifolds with N facets are still

exponentially many: they are at most 2
d3
2 N .
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Special effects: Coning

Theorem (B.–Pavelka 2023)
Cones over t-LC d-pseudomanifolds are t-LC.

⇒ 2-LC d-pseudomanifolds more than exponentially many!

(just by looking at cones over surfaces)
• Unlike the B.-Ziegler result, our result really uses the

manifold assumption: without it, it’s false.

Crucial facts for our proof
• Links of (d − 3)-faces in a manifold are homeomorphic to

S2 or a disk.
• Planar gluings lead to count by Catalan numbers.
• Our proof makes precise and extends to all dimension the

work for d = 3 by Mogami.
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Another famous picture: Cohen-Macaulayness

• A d-dimensional complex C is called
[homotopy-]Cohen–Macaulay if for any face F , for all
i < dim link(F ,C), [πi(link(F ,C)) = 0 and]
Hi(link(F ,C)) = 0.

• Constructible simplicial complex defined inductively:
- every simplex, and every 0-complex, is constructible;
- a d-dim pure simplicial complex C that is not a simplex is

constructible if and only if it can be written as C = C1 ∪ C2,
where C1 and C2 are constructible d-complexes, and
C1 ∩ C2 is a pure constructible (d − 1)-complex.

• Constructible complexes are homotopy-Cohen–Macaulay
(Hochster 1972).
• Constructible manifolds are LC. (B.–Ziegler 2011)
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... And here is another movie!

Definition (B.–Pavelka 2023)
Let 0 < t ≤ d be integers. t-constructible d-dimensional
simplicial complexes defined inductively:

• every simplex is t-constructible;
• a 1-dimensional complex is t-constructible

if connected;
• a d-dimensional pure simplicial complex

C that is not a simplex is t-constructible if
C = C1 ∪ C2, where C1 and C2 are
t-constructible d-complexes, and C1 ∩ C2
is a pure (d − 1)-complex whose
(d − t)-skeleton is constructible.
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Final picture

Theorem (B.–Pavelka 2023)
t-constructible pseudomanifolds are t-LC.

(generalizes “constructible manifolds are LC”)

Theorem (B.–Pavelka 2023)

The (d − t + 1)-skeleton of a t-constructible d-complex is
(homotopy)-Cohen–Macaulay.

(In other words, t-constructible d-complexes have (homotopic)
depth > d − t). (generalizes “constructible complexes are CM”)
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