2-LC triangulated manifolds are exponentially many

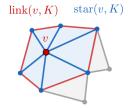
Bruno Benedetti joint work with Marta Pavelka

University of Miami

Modena, GRAS70

Background picture

- Facets are inclusion-maximal faces of a regular CW-complex.
- Pure: a regular CW-complex with facets of same dimension.
- Star of a face σ: the smallest subcomplex containing all facets that contain σ.



- $link(\sigma, K) = \{ \tau \in star(\sigma, K) : \tau \cap \sigma = \emptyset \}$ if K is a simplicial complex. If K is a regular CW-complex: "spherical link"
- Triangulation of a smooth d-manifold M: a d-dim simplicial complex whose underlying space is homeomorphic to M.
- *d-sphere*: A triangulation of the *d*-dimensional sphere.
- *d-pseudomanifold*: a *d*-dim pure simplicial regular CW-complex where each (d-1)-cell is in ≤ 2 facets.

Two triangulations are equivalent \iff same face poset.

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

 $\{2\text{-spheres}\} = \{\text{ boundaries of simplicial 3-dim polytopes}\}.$

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

 $\{2\text{-spheres}\} = \{ \text{ boundaries of simplicial 3-dim polytopes} \}.$

For $d \ge 3$, there are way more d-spheres [Pfeifle–Ziegler 2003, Nevo–Santos–Wilson 2016, Novik–Zheng 2022]

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

```
\{2\text{-spheres}\} = \{\text{ boundaries of simplicial 3-dim polytopes}\}.
```

For $d \geq 3$, there are way more d-spheres [Pfeifle—Ziegler 2003, Nevo—Santos—Wilson 2016, Novik—Zheng 2022] than (d+1)-polytopes [Goodman—Pollack 1986, Alon 1986].

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

```
\{2\text{-spheres}\} = \{\text{ boundaries of simplicial 3-dim polytopes}\}.
```

For $d \geq 3$, there are way more d-spheres [Pfeifle—Ziegler 2003, Nevo—Santos—Wilson 2016, Novik—Zheng 2022] than (d+1)-polytopes [Goodman—Pollack 1986, Alon 1986]. Due to discrete quantum gravity (which cheers for 'yes' — cf. Riccardo Martini's talk yesterday) we count triangulations with respect to the number N of facets.

Gromov's question (2000)

How many 3-spheres with N tetrahedra, exponentially many?

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

```
{2-spheres} = { boundaries of simplicial 3-dim polytopes}.
```

For $d \geq 3$, there are way more d-spheres [Pfeifle—Ziegler 2003, Nevo—Santos—Wilson 2016, Novik—Zheng 2022] than (d+1)-polytopes [Goodman—Pollack 1986, Alon 1986]. Due to discrete quantum gravity (which cheers for 'yes' — cf. Riccardo Martini's talk yesterday) we count triangulations with respect to the number N of facets.

Gromov's question (2000)

How many 3-spheres with N tetrahedra, exponentially many?

B.-Ziegler (2011)

In any fixed dimension, there are exponentially many simplicial polytopes.

Two triangulations are equivalent \iff same face poset.

Steinitz's theorem

 $\{2\text{-spheres}\} = \{ \text{ boundaries of simplicial 3-dim polytopes} \}.$

For $d \geq 3$, there are way more d-spheres [Pfeifle—Ziegler 2003, Nevo—Santos—Wilson 2016, Novik—Zheng 2022] than (d+1)-polytopes [Goodman—Pollack 1986, Alon 1986]. Due to discrete quantum gravity (which cheers for 'yes' — cf. Riccardo Martini's talk yesterday) we count triangulations with respect to the number N of facets.

Gromov's question (2000)

How many 3-spheres with N tetrahedra, exponentially many?

B.-Ziegler (2011)

In any fixed dimension, there are exponentially many simplicial polytopes. (Or more generally, simplicial shellable spheres.)

Too big picture

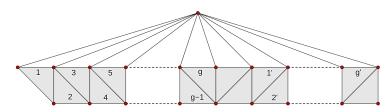
Surfaces and Pseudomanifolds are too many.

Too big picture

Surfaces and Pseudomanifolds are too many.

Theorem [Folklore]

There are g! triangulations of the genus-g surface, with 16g triangles each. Hence, there are more than exponentially many surfaces with N triangles.

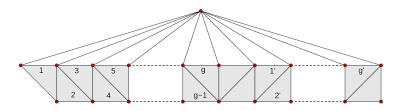


Too big picture

Surfaces and Pseudomanifolds are too many.

Theorem [Folklore]

There are g! triangulations of the genus-g surface, with 16g triangles each. Hence, there are more than exponentially many surfaces with N triangles.



Corollary (via coning)

There are more than exponentially many 3-pseudomanifolds with *N* tetrahedra.

A picture dear to me: LC Manifolds

- LC manifolds are those obtainable from a tree of d-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... by gluing incident boundary facets.
- All shellable (or constructible) spheres are LC.

Theorem (Durhuus–Jonsson 1995; B.–Ziegler 2011)

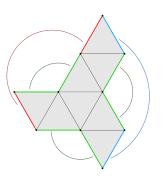
LC triangulations of *d*-manifolds with *N* facets are at most 2^{d^2N} .

Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with N facets are exponentially many.

A picture dear to me: LC Manifolds

- LC manifolds are those obtainable from a tree of d-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... by gluing incident boundary facets.
- All shellable (or constructible) spheres are LC.



Theorem (Durhuus–Jonsson 1995; B.–Ziegler 2011)

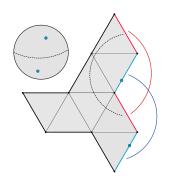
LC triangulations of *d*-manifolds with *N* facets are at most 2^{d^2N} .

Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with *N* facets are exponentially many.

A picture dear to me: LC Manifolds

- LC manifolds are those obtainable from a tree of d-simplices by recursively gluing two adjacent boundary facets.
- Mogami manifolds: ... by gluing incident boundary facets.
- All shellable (or constructible) spheres are LC.



Theorem (Durhuus–Jonsson 1995; B.–Ziegler 2011)

LC triangulations of *d*-manifolds with *N* facets are at most 2^{d^2N} .

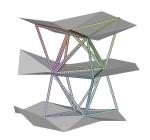
Theorem (Mogami 1995)

Mogami triangulations of 3-manifolds with *N* facets are exponentially many.

Later pictures

Classes with proven exponential size:

- (d=2) Surfaces with fixed genus (Tutte 1962)
- (d=3) Causal triangulations (Durhuus–Jonsson 2014)
- (any d) Bounded geometry,
 á-la-Cheeger (Adiprasito–B. 2020)



 Triangulations with bounded discrete Morse vector – contains all classes above, and also LC triangulations, but not Mogami triangulations (Benedetti 2012)

B.-Ziegler (2011)

A *d*-manifold without boundary is LC if and only if it admits a discrete Morse vector that ends in ...0, 1).

Turning my favorite picture into a movie: t-LC

Let *t* be an integer ranging from 1 to *d*.

Turning my favorite picture into a movie: t-LC

Let *t* be an integer ranging from 1 to *d*.

Definition (B.-Pavelka 2023)

t-LC d-manifolds are those obtainable from a tree of d-simplices by recursively gluing two boundary facets whose intersection has dimension at least d-1-t.

- 1-LC the same as LC
- 1-LC ⊂ 2-LC ⊂ · · · ⊂ d-LC
- All connected d-manifolds are d-LC

Turning my favorite picture into a movie: t-LC

Let *t* be an integer ranging from 1 to *d*.

Definition (B.-Pavelka 2023)

t-LC d-manifolds are those obtainable from a tree of d-simplices by recursively gluing two boundary facets whose intersection has dimension at least d-1-t.

- 1-LC the same as LC
- 1-LC ⊂ 2-LC ⊂ · · · ⊂ *d*-LC
- All connected d-manifolds are d-LC

Main theorem (B.-Pavelka 2023)

2-LC triangulations of *d*-manifolds with *N* facets are still exponentially many: they are at most $2^{\frac{\sigma^3}{2}N}$.

Theorem (B.-Pavelka 2023)

Cones over *t*-LC *d*-pseudomanifolds are *t*-LC.

⇒ 2-LC *d*-pseudomanifolds more than exponentially many!

Theorem (B.-Pavelka 2023)

Cones over t-LC d-pseudomanifolds are t-LC.

⇒ 2-LC d-pseudomanifolds more than exponentially many! (just by looking at cones over surfaces)

Theorem (B.-Pavelka 2023)

Cones over t-LC d-pseudomanifolds are t-LC.

⇒ 2-LC d-pseudomanifolds more than exponentially many! (just by looking at cones over surfaces)

Theorem (B.-Pavelka 2023)

Cones over t-LC d-pseudomanifolds are t-LC.

- ⇒ 2-LC d-pseudomanifolds more than exponentially many! (just by looking at cones over surfaces)
 - Unlike the B.-Ziegler result, our result really uses the manifold assumption: without it, it's false.

Theorem (B.-Pavelka 2023)

Cones over t-LC d-pseudomanifolds are t-LC.

- ⇒ 2-LC d-pseudomanifolds more than exponentially many! (just by looking at cones over surfaces)
 - Unlike the B.-Ziegler result, our result really uses the *manifold* assumption: without it, it's false.

Crucial facts for our proof

- Links of (d 3)-faces in a manifold are homeomorphic to S² or a disk.
- Planar gluings lead to count by Catalan numbers.
- Our proof makes precise and extends to all dimension the work for d = 3 by Mogami.

Another famous picture: Cohen-Macaulayness

• A *d*-dimensional complex *C* is called [homotopy-]Cohen–Macaulay if for any face *F*, for all $i < \dim \operatorname{link}(F, C)$, $[\pi_i(\operatorname{link}(F, C)) = 0$ and] $H_i(\operatorname{link}(F, C)) = 0$.

Another famous picture: Cohen-Macaulayness

- A *d*-dimensional complex *C* is called [homotopy-]Cohen–Macaulay if for any face *F*, for all $i < \dim \operatorname{link}(F, C)$, $[\pi_i(\operatorname{link}(F, C)) = 0$ and] $H_i(\operatorname{link}(F, C)) = 0$.
- Constructible simplicial complex defined inductively:
 - every simplex, and every 0-complex, is constructible;
 - a d-dim pure simplicial complex C that is not a simplex is constructible if and only if it can be written as $C = C_1 \cup C_2$, where C_1 and C_2 are constructible d-complexes, and $C_1 \cap C_2$ is a pure constructible (d-1)-complex.

Another famous picture: Cohen-Macaulayness

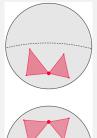
- A *d*-dimensional complex *C* is called [homotopy-]Cohen–Macaulay if for any face *F*, for all $i < \dim \operatorname{link}(F, C)$, $[\pi_i(\operatorname{link}(F, C)) = 0$ and] $H_i(\operatorname{link}(F, C)) = 0$.
- Constructible simplicial complex defined inductively:
 - every simplex, and every 0-complex, is constructible;
 - a d-dim pure simplicial complex C that is not a simplex is constructible if and only if it can be written as $C = C_1 \cup C_2$, where C_1 and C_2 are constructible d-complexes, and $C_1 \cap C_2$ is a pure constructible (d-1)-complex.
- Constructible complexes are homotopy-Cohen–Macaulay (Hochster 1972).
- Constructible manifolds are LC. (B.–Ziegler 2011)

... And here is another movie!

Definition (B.-Pavelka 2023)

Let $0 < t \le d$ be integers. *t-constructible d-*dimensional simplicial complexes defined inductively:

- every simplex is t-constructible;
- a 1-dimensional complex is t-constructible if connected;
- a d-dimensional pure simplicial complex C that is not a simplex is t-constructible if $C = C_1 \cup C_2$, where C_1 and C_2 are t-constructible d-complexes, and $C_1 \cap C_2$ is a pure (d-1)-complex whose (d-t)-skeleton is constructible.



Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are *t*-LC.

Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are t-LC.

(generalizes "constructible manifolds are LC")

Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are t-LC.

(generalizes "constructible manifolds are LC")

Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are t-LC.

(generalizes "constructible manifolds are LC")

Theorem (B.-Pavelka 2023)

The (d - t + 1)-skeleton of a t-constructible d-complex is (homotopy)-Cohen–Macaulay.

Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are t-LC.

(generalizes "constructible manifolds are LC")

Theorem (B.-Pavelka 2023)

The (d - t + 1)-skeleton of a t-constructible d-complex is (homotopy)-Cohen–Macaulay.

(In other words, t-constructible d-complexes have (homotopic) depth > d - t).

Theorem (B.-Pavelka 2023)

t-constructible pseudomanifolds are t-LC.

(generalizes "constructible manifolds are LC")

Theorem (B.-Pavelka 2023)

The (d - t + 1)-skeleton of a t-constructible d-complex is (homotopy)-Cohen–Macaulay.

(In other words, t-constructible d-complexes have (homotopic) depth > d - t). (generalizes "constructible complexes are CM")