A tour into Dunwoody manifolds

Alessia Cattabriga (University of Bologna)

Geometric Topology, Art, and Science Reggio Emilia, 9 June 2023

When everything (at least for me) started...

Forum Math. 13 (2001), 379-397

Forum Mathematicum © de Gruyter 2001

Genus one 1-bridge knots and Dunwoody manifolds*

Luigi Grasselli and Michele Mulazzani

(Communicated by Karl Strambach)

Abstract. In this paper we show that all 3-manifolds of a family introduced by M. J. Dumwoody are cycle coverings of less spaces (possible §5), herached or organ one 1-bridge knots. As a consequence, we give a positive answer to the Dumwoody conjecture that all the elements of a wide subclass are cycle coverings of \$5'\$ branched over a knot Moreover, we show the horached cover a knot Moreover, which we have the subclass are cycle coverings of \$5'\$ branched over a knot Moreover, we show the branched cycle coverings of \$5'\$ branched over a knot before to this subclass; this might is that the family covering of a 2-bridge knot admits a geometric cycle processition.

1991 Mathematics Subject Classification: 57M12, 57M25: 20F05, 57M05.

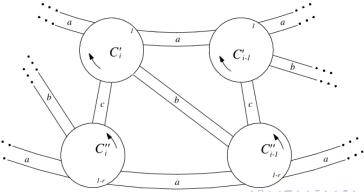
Plan of the talk

- 1. Dunwoody manifolds.
- 2. Characterization via branched coverings.
- 3. Complexity estimation.
- 4. Link equivalence in Dunwoody manifolds.
- 5. Future works.

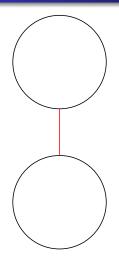
1. Dunwoody manifolds: definition

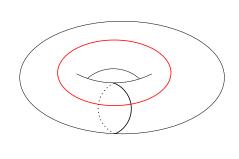
Definition (Dunwoody 1995)

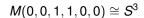
Given the 6-tuple of integers (a, b, c, n, r, s), the Dunwoody manifold M(a,b,c,n,r,s) is the **closed** connected orientable 3-manifold having the graph $\Gamma(a,b,c,n)$, with the circle C_i identified with C_{i+s} mod n and respecting vertices' labelling, as (open) Heegaard diagram, for n > 0, $a,b,c \ge 0$ and (a,b,c,n,r,s) admissible.



1. Dunwoody manifolds: definition

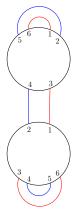


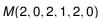


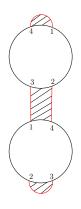


1. Dunwoody manifolds: definition

Two examples of 6-tuples that are NOT admissible.







M(1,0,2,1,2,0)

1. Dunwoody manifolds: examples

- n = 1 lens spaces (i.e. cyclic quotients of S^3), S^3 , $S^2 \times S^1$
- M(1,0,0,n,1,0) connected sum of n copies of $S^2 \times S^1$
- Minkus manifolds (Fibonacci manifolds and fractional Fibonacci manifolds)
- Sieradsky manifolds
- periodic Takahashi manifolds $T_n(1/q, 1/r)$
- Seifert manifolds¹ (*Oo*, 0 | -1; $(p,q), \dots, (p,q), (l,l-1)$).

¹Grasselli L. and Mulazzani M., Seifert manifolds and (1,1)-knots, *Siberian Math. J.* **50** (2009), 22-31.

Heegaard genus at most n

- Heegaard genus at most n
- cyclic symmetry of order n

- Heegaard genus at most n
- cyclic symmetry of order n
- cyclically presented fundamental group with n generators

$$G_n(w) = \langle x_1, \ldots, x_n \mid \theta^j(w), j = 0, \ldots n-1 \rangle$$

with $\theta(x_i) = x_{i+1}$ subscripts mod n.

- Heegaard genus at most n
- cyclic symmetry of order n
- cyclically presented fundamental group with n generators

$$G_n(\mathbf{w}) = \langle x_1, \dots, x_n \mid \theta^j(\mathbf{w}), j = 0, \dots n-1 \rangle$$

with $\theta(x_i) = x_{i+1}$ subscripts mod n.

Motivating questions: which cyclically presented groups are fundamental groups of 3-manifolds (with cyclic symmetry)?

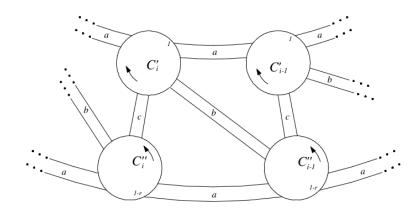
- Heegaard genus at most n
- cyclic symmetry of order n
- cyclically presented fundamental group with n generators

$$G_n(\mathbf{w}) = \langle x_1, \dots, x_n \mid \theta^j(\mathbf{w}), j = 0, \dots n-1 \rangle$$

with $\theta(x_i) = x_{i+1}$ subscripts mod n.

Motivating questions: which cyclically presented groups are fundamental groups of 3-manifolds (with cyclic symmetry)?

Howie Williams 2020: Study more general graphs with cyclic symmetry/cyclically presented groups.



Theorem (Grasselli, Mulazzani 2001)

^a Every Dunwoody manifold is a n-fold strongly-cyclic covering of a lens space (possibly S^3 or $S^2 \times S^1$) branched over a (1,1)-knot.

^aGrasselli L. and Mulazzani M., Genus one 1-bridge knots and Dunwoody manifolds, *Forum Math.* **13** (2001), 379-397.

Theorem (Grasselli, Mulazzani 2001)

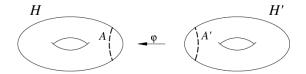
^a Every Dunwoody manifold is a n-fold strongly-cyclic covering of a lens space (possibly S^3 or $S^2 \times S^1$) branched over a (1,1)-knot.

^aGrasselli L. and Mulazzani M., Genus one 1-bridge knots and Dunwoody manifolds, *Forum Math.* **13** (2001), 379-397.

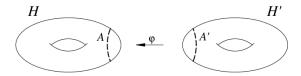
Theorem (C., Mulazzani 2003)

Every n-fold strongly-cyclic covering of a lens space (possibly S^3 or $S^2 \times S^1$) branched over a (1,1)-knot is a Dunwoody manifold.

The branching set is a (1,1)-knot (or genus one 1-bridge knot).



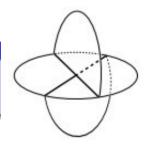
The branching set is a (1,1)-knot (or genus one 1-bridge knot).



The covering is strongly-cyclic, that it is cyclic and the branching index at each point of the branching set equals the number of sheets of the covering.

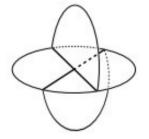
Definition (Matveev 1990)

The complexity c(M) of a closed 3-manifold M is the minimum number of true vertices among all almost simple spines of M.



Definition (Matveev 1990)

The complexity c(M) of a closed 3-manifold M is the minimum number of true vertices among all almost simple spines of M.



An almost simple spines of M (closed) is an embedded polyhedron P such that:

- $(M \operatorname{int}(B^3)) \searrow P$
- the link of each point in P can be embedded into K_4 .

A true vertex of an almost simple spine is a point whose link is K_4 .

Proposition (Matveev 1990)

For closed irreducible and \mathbb{P}^2 - irreducible manifolds the complexity coincide with **the minimum number of tetrahedra** needed to construct a manifold (by gluing tetrahedra along their faces with affine identifications), with the only exceptions of S^3 , \mathbb{RP}^3 and L(3,1), all having complexity zero.

Proposition (Matveev 1990)

For closed irreducible and \mathbb{P}^2 - irreducible manifolds the complexity coincide with **the minimum number of tetrahedra** needed to construct a manifold (by gluing tetrahedra along their faces with affine identifications), with the only exceptions of S^3 , \mathbb{RP}^3 and L(3,1), all having complexity zero.

Compute complexity is, in general a very difficult task!

Proposition (C., Mulazzani, Vesnin 2010)

Let M = M(a, b, c, n, r, s) be a Dunwoody manifold.

(i) If abc > 0 then

$$c(M) \leqslant \left\{ \begin{array}{ll} n(2a+b+c) - \max(2n,6) & \text{ if } r \neq -b, -b \pm 1, \\ n(2a+b+c) - \max(2n,5) & \text{ if } r = -b \pm 1. \end{array} \right.$$

(ii) If abc = 0 and min(a, b + c) = 0 then

$$c(M) \le \begin{cases} n(2a+b+c-4) & \text{if } r \ne -b, -b \pm 1, \\ n(2a+b+c-3) & \text{if } r = -b \pm 1. \end{cases}$$

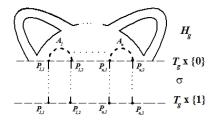
(iii) If abc = 0 and min(a, b + c) > 0 then

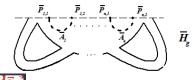
$$c(\textit{M}) \leqslant \left\{ \begin{array}{ll} n(2a+b+c-2) & \text{if } n>3, \\ n(2a+c) - \max(2n,8-2k_0) & \text{if } n=2,3, \ b=0 \ \text{and} \ s=0, \\ n(2a+b) - \max(2n,8-k_0-k_1) & \text{if } n=2, c=0 \ \text{and} \ s=0, \\ n(2a+b) - \max(2n,8-k_0) & \text{if } n=3, c=0 \ \text{and} \ s=0, \\ n(2a+b) - \max(2n,8-k_1) & \text{if } n=3, c=0 \ \text{and} \ s=1, \end{array} \right.$$

where
$$k_i =$$

$$\begin{cases} 2 & \text{if } r = (-1)^i b, \\ 1 & \text{if } r = (-1)^i b \pm 1, \\ 0 & \text{otherwise.} \end{cases}$$

 $\it M$ closed connected orientable 3-manifold and $\it T_g$ a **Heegaard surface** for $\it M$.

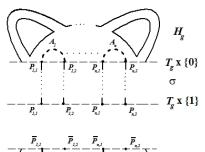


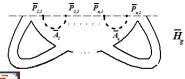


Theorem (Birman 1976, Doll 1992, C.-Mulazzani 2008, Bellingeri-C. 2012)

Every link in M is (isotopic to) the plat closure $\hat{\sigma}$ of an element σ in the surface braid group $B_{2n}(T_g)$.

 \emph{M} closed connected orientable 3-manifold and \emph{T}_g a **Heegaard surface** for \emph{M} .





Every link in M is (isotopic to) the plat closure $\widehat{\sigma}$ of an element σ in the surface braid group $B_{2n}(T_g)$.

Theorem (C.-Gabrovšek 2018)

Two links $\widehat{\beta_1}$ and $\widehat{\beta_2}$ in M are isotopic iff $\beta_1 = \beta_2$ in $B_{2n}(T_g)$ up to

- multiplication by "Hilden" type elements → isotopy in the thickened surface
- stabilization

$$B_{2n}(T_g) = \langle \sigma_1, \dots, \sigma_{2n-1}, a_1, \dots, a_g, b_1, \dots, b_g \mid \text{relations} \rangle$$

$$B_{2n}(T_g) = \langle \sigma_1, \dots, \sigma_{2n-1}, a_1, \dots, a_g, b_1, \dots, b_g \mid \text{relations} \rangle$$

Theorem (C.-Gabrovšek 2018)

Two links $\widehat{\beta_1}$ and $\widehat{\beta_2}$ in M are isotopic iff $\beta_1 = \beta_2$ in $B_{2n}(T_g)$ up to

(M1)
$$\sigma_1 \beta \longleftrightarrow \beta \longleftrightarrow \beta \sigma_1$$

(M2)
$$\sigma_{2i}\sigma_{2i+1}\sigma_{2i-1}\sigma_{2i}\beta \longleftrightarrow \beta \longleftrightarrow \beta\sigma_{2i}\sigma_{2i+1}\sigma_{2i-1}\sigma_{2i} \ i=1,\ldots,n$$

(M3)
$$\sigma_2 \sigma_1^2 \sigma_2 \beta \longleftrightarrow \beta \longleftrightarrow \beta \sigma_2 \sigma_1^2 \sigma_2$$

(M4)
$$a_j \sigma_1^{-1} a_j \sigma_1^{-1} \beta \longleftrightarrow \beta \longleftrightarrow \beta a_j \sigma_1^{-1} a_j \sigma_1^{-1}$$
 for $j = 1, \dots, g$

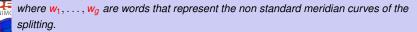
(M5)
$$b_j \sigma_1^{-1} b_j \sigma_1^{-1} \beta \longleftrightarrow \beta \longleftrightarrow \beta b_j \sigma_1^{-1} b_j \sigma_1^{-1}$$
 for $j = 1, \dots, g$

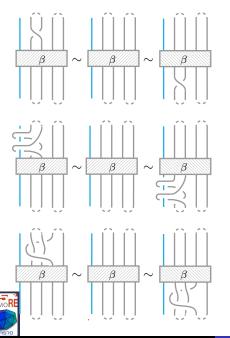
(S)
$$\beta \longleftrightarrow T_k(\beta)\sigma_{2k}$$

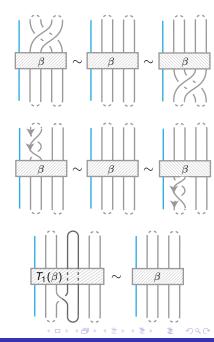
where
$$T_k: B_{g,2n} \to B_{g,2n+2}$$
 is defined by $T_k(a_i) = a_i, T_k(b_i) = b_i$,

$$T_{k}(\sigma_{i}) = \begin{cases} \sigma_{i} & \text{if } i < 2k \\ \sigma_{2k}\sigma_{2k+1}\sigma_{2k+2}\sigma_{2k+1}^{-1}\sigma_{2k}^{-1} & \text{if } i = 2k \\ \sigma_{i+2} & \text{if } i > 2k \end{cases}$$

$$(psl_i/plsl_i*)$$
 $w_j\beta \longleftrightarrow \beta \longleftrightarrow \beta b_j$ for $j=1,\ldots,g$







Theorem (C., Cavicchioli 2023)

If M = M(a, b, c, n, r, s) is a Dunwoody manifold the words w_1, \ldots, w_n can be algorithmically computed from (a, b, c, n, r, s) with complexity O(N) with N = (2a + b + c)n.

5. Future works

 Determine explicit expression for w_j for some families of Dunwoody manifolds.

5. Future works

- Determine explicit expression for w_j for some families of Dunwoody manifolds.
- Understand algebraically the set of moves.

5. Future works

- Determine explicit expression for w_j for some families of Dunwoody manifolds.
- Understand algebraically the set of moves.
- Understand the dependence on the Heegaard surface: study the problem in Seifert that are Dunwoody.

Thanks for your attention

