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When everything (at least for me) started...
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Plan of the talk

1. Dunwoody manifolds.
2. Characterization via branched coverings.
3. Complexity estimation.
4. Link equivalence in Dunwoody manifolds.
5. Future works.
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1. Dunwoody manifolds: definition
Definition (Dunwoody 1995)

Given the 6-tuple of integers (a,b, c,n, r , s), the Dunwoody manifold
M(a,b,c,n,r , s) is the closed connected orientable 3-manifold having
the graph Γ(a,b,c,n), with the circle Ci identified with Ci+s mod n and
respecting vertices’ labelling, as (open) Heegaard diagram, for n > 0,
a,b, c ≥ 0 and (a,b, c,n, r , s) admissible.
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1. Dunwoody manifolds: definition

M(0,0,1,1,0,0) ∼= S3
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1. Dunwoody manifolds: definition

Two examples of 6-tuples that are NOT admissible.
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1. Dunwoody manifolds: examples

n = 1 lens spaces (i.e. cyclic quotients of S3), S3, S2 × S1

M(1,0,0,n,1,0) connected sum of n copies of S2 × S1

Minkus manifolds (Fibonacci manifolds and fractional Fibonacci
manifolds)
Sieradsky manifolds
periodic Takahashi manifolds Tn(1/q,1/r)

Seifert manifolds1 (Oo,0 | −1; (p,q), . . . , (p,q)︸ ︷︷ ︸
n−times

, (l , l − 1)).

1Grasselli L. and Mulazzani M., Seifert manifolds and (1, 1)-knots, Siberian Math. J.
50 (2009), 22-31.
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1. Dunwoody manifolds: properties

Heegaard genus at most n

cyclic symmetry of order n
cyclically presented fundamental group with n generators

Gn(w) = 〈x1, . . . , xn | θj (w), j = 0, . . .n − 1〉

with θ(xi ) = xi+1 subscripts mod n.

Motivating questions: which cyclically presented groups are
fundamental groups of 3-manifolds (with cyclic symmetry)?

Howie Williams 2020: Study more general graphs with cyclic
symmetry/cyclically presented groups

.
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2. Dunwoody manifolds: characterisation
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2. Dunwoody manifolds: characterisation

Theorem (Grasselli, Mulazzani 2001)
a Every Dunwoody manifold is a n-fold strongly-cyclic covering of a
lens space (possibly S3 or S2 × S1) branched over a (1,1)-knot.

aGrasselli L. and Mulazzani M., Genus one 1-bridge knots and Dunwoody manifolds,
Forum Math. 13 (2001), 379-397.

Theorem (C., Mulazzani 2003)

Every n-fold strongly-cyclic covering of a lens space (possibly S3 or
S2 × S1) branched over a (1,1)-knot is a Dunwoody manifold.
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3. Dunwoody manifolds: characterisation

The branching set is a (1,1)-knot (or genus one 1-bridge knot).

The covering is strongly-cyclic, that it is cyclic and the branching
index at each point of the branching set equals the number of sheets
of the covering.
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3. Dunwoody manifolds: complexity estimation

Definition (Matveev 1990)

The complexity c(M) of a closed 3-manifold M is
the minimum number of true vertices among all
almost simple spines of M.

An almost simple spines of M (closed) is an embedded polyhedron P
such that:(

M − int(B3)
)
↘ P

the link of each point in P can be embedded into K4.
A true vertex of an almost simple spine is a point whose link is K4.
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3. Dunwoody manifolds: complexity estimation

Proposition (Matveev 1990)

For closed irreducible and P2- irreducible manifolds the complexity
coincide with the minimum number of tetrahedra needed to
construct a manifold (by gluing tetrahedra along their faces with affine
identifications), with the only exceptions of S3, RP3 and L(3,1), all
having complexity zero.

Compute complexity is, in general a very difficult task!
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3. Dunwoody manifolds: complexity estimation

Proposition (C., Mulazzani, Vesnin 2010)

Let M = M(a,b, c,n, r , s) be a Dunwoody manifold.
(i) If abc > 0 then

c(M) 6

{
n(2a + b + c)−max(2n, 6) if r 6= −b,−b ± 1,
n(2a + b + c)−max(2n, 5) if r = −b ± 1.

(ii) If abc = 0 and min(a, b + c) = 0 then

c(M) 6

{
n(2a + b + c − 4) if r 6= −b,−b ± 1,
n(2a + b + c − 3) if r = −b ± 1.

(iii) If abc = 0 and min(a, b + c) > 0 then

c(M) 6


n(2a + b + c − 2) if n > 3,
n(2a + c)−max(2n, 8− 2k0) if n = 2, 3, b = 0 and s = 0,
n(2a + b)−max(2n, 8− k0 − k1) if n = 2, c = 0 and s = 0,
n(2a + b)−max(2n, 8− k0) if n = 3, c = 0 and s = 0,
n(2a + b)−max(2n, 8− k1) if n = 3, c = 0 and s = 1,

where ki =

 2 if r = (−1)i b,
1 if r = (−1)i b ± 1,
0 otherwise.
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4. Link equivalence in Dunwoody manifolds

M closed connected orientable 3-manifold
and Tg a Heegaard surface for M.

Theorem (Birman 1976, Doll 1992,
C.-Mulazzani 2008, Bellingeri-C. 2012)

Every link in M is (isotopic to) the plat
closure σ̂ of an element σ in the surface
braid group B2n(Tg).

Theorem (C.-Gabrovšek 2018)

Two links β̂1 and β̂2 in M are isotopic iff
β1 = β2 in B2n(Tg) up to

multiplication by “Hilden” type
elements isotopy in the
thickened surface
stabilization
multiplication by braid
representative of meridian curves
 isotopy through the handles.
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4. Link equivalence in Dunwoody manifolds

B2n(Tg) = 〈σ1, . . . , σ2n−1,a1, . . . ,ag ,b1, . . . ,bg | relations〉

Theorem (C.-Gabrovšek 2018)

Two links β̂1 and β̂2 in M are isotopic iff β1 = β2 in B2n(Tg) up to

(M1) σ1β ←→ β ←→ βσ1

(M2) σ2iσ2i+1σ2i−1σ2iβ ←→ β ←→ βσ2iσ2i+1σ2i−1σ2i i = 1, . . . , n

(M3) σ2σ
2
1σ2β ←→ β ←→ βσ2σ

2
1σ2

(M4) ajσ
−1
1 ajσ

−1
1 β ←→ β ←→ βajσ

−1
1 ajσ

−1
1 for j = 1, . . . , g

(M5) bjσ
−1
1 bjσ

−1
1 β ←→ β ←→ βbjσ

−1
1 bjσ

−1
1 for j = 1, . . . , g

(S) β ←→ Tk (β)σ2k

where Tk : Bg,2n → Bg,2n+2 is defined by Tk (ai ) = ai , Tk (bi ) = bi ,

Tk (σi ) =


σi if i < 2k
σ2kσ2k+1σ2k+2σ

−1
2k+1σ

−1
2k if i = 2k

σi+2 if i > 2k
.

(psli/plsli∗) wjβ ←→ β ←→ βbj for j = 1, . . . , g

where w1, . . . ,wg are words that represent the non standard meridian curves of the
splitting.
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β β β T1(β) β
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β β β β β β
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4. Link equivalence in Dunwoody manifolds

Theorem (C., Cavicchioli 2023)

If M = M(a,b, c,n, r , s) is a Dunwoody manifold the words w1, . . . ,wn
can be algorithmically computed from (a,b, c,n, r , s) with complexity
O(N) with N = (2a + b + c)n.
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5. Future works

Determine explicit expression for wj for some families of
Dunwoody manifolds.

Understand algebraically the set of moves.
Understand the dependence on the Heegaard surface: study the
problem in Seifert that are Dunwoody.
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Thanks for your attention
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