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Two open problems:
» detecting when a cork twist changes the smooth structure

» we have only partial understanding of how corks change
Seiberg-Witten invariants.

» we lack a classification of corks in particular we cannot
enumerate them.

Protocorks are a possible way to attack these problems:

> a class of compact 4-manifolds analogous to corks, with a
“protocork twist” operation

> the action of a cork depends on the action of a supporting
protocork.

» |n contrast with corks we can enumerate them.
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only 2-handles and 3-handles.

Aj = aS(h?), B; := bS(hjz.) then A;- B; = 5. And A;N A; = 2,
A? = 0 (same for B;s).

P12 C Xq/; tubular neighb. of U,’j(A,- UBj), PhCXo, PrCX
outcoming end.

a € Diffeo.(0Py, dPy), (Py, Py, ) “abstract protocork ”.
Xo = M Py, X1 = MU, P1 “protocork twist”.
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» The intersection graph of the 2-spheres, determines (P, P;, @)
up to isomorphism = can enumerate them
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» If the graph is symmetric the protocork is encoded by a pair
(Po,T), T. (')PO - 8P0
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Prop. Any cork (C, f) admits a supporting protocork.



» Problem: does a protocork twist change the Seiberg-Witten
invariants?

To analyse this we use Monopole Floer homology
(Kronheimer-Mrowka ’07). Recap:

» To Y3 oriented, closed 3-manifold we associate Z[[U]]-modules
HM.(Y), HMJ(Y), HM(Y)

- P -1
» Ex. HMo(S?) = Z[[U]], HM.(S?) ~ _ZU[-L%[[’JJ]]]]’

» W* cobordism W : Y, — Yi, induces
HMo(W) : HMJ(Yy) = HMu(Y7)

Z[[U]]-homomorphism.
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> (Py, Py, id) abstract protocork, Y = 9P,
> Xo = MUy Po, mi(Xo) = {1}, b(Xo) 2 2,
» Xi = MUy P result of protocork twist
XO Xl

> sy € Spin(M) with sy|y trivial induces s; € Spin°(X;)
Define the difference element A € m.(Y; Z/2)
> A= HMJ(P, \ BY(3) — HMo(P; \ BY)(3) mod 2

Kronheimer-Mrowka:

SW(Xo,%0) — SW(Xq,51) = Lms,,(A) mod 2

where Ly s,, is Z-homomorphisms.
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> they show that

d(sm) > npys = SW(Xp, 50) — SW(Xi,51) =0
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An invariant of corks

Corollary 2: Let (C, f) be a cork,
> let x := HMo(C \ BY)(1) € HM.(8C),
> define Ac := x— fix mod 2 € F/M.(ac; Z]2).
Then Ac belongs to HMT{’((?C; Z/2), in particular is U-torsion,

thus ord(Ac) is an invariant of corks.

Examples (originally proved by Lin-Ruberman-Saveliev *18):
> Let (C, f) be the Akbulut cork,
HM™4(5C) ~ thus ord(A¢) = 1.

v

( Dk
(C.f) (changing orlentation) is a cork as well,
HM™(=9C) ~ thus ord(Az) = 0
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Hence (C, f) cannot change SW-invariants mod 2,
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