Protocorks and exotic 4-manifolds

Roberto Ladu (MPIM) ladu@mpim-bonn.mpg.de

June 6, 2023 Geometric Topology, Arts and Science

DEF.(cf. [Akb16]) An abstract cork(C, f) is a pair where

DEF.(cf. [Akb16]) An abstract cork(C, f) is a pair where

► C^4 is compact, contractible, with $\partial C \neq \emptyset$

DEF.(cf. [Akb16]) An abstract cork (C, f) is a pair where

- ► C^4 is compact, contractible, with $\partial C \neq \emptyset$
- $f \in Diffeo_{+}(\partial C)$ such that f does not extend to $Diffeo_{+}(C)$.

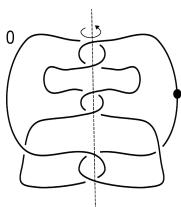
DEF.(cf. [Akb16]) An abstract cork(C, f) is a pair where

- ► C^4 is compact, contractible, with $\partial C \neq \emptyset$
- ▶ $f \in Diffeo_+(\partial C)$ such that f does not extend to $Diffeo_+(C)$. Also, $f^2 = id|_{\partial C}$ (involution).

DEF.(cf. [Akb16]) An abstract cork(C, f) is a pair where

- ► C^4 is compact, contractible, with $\partial C \neq \emptyset$
- ▶ $f \in Diffeo_+(\partial C)$ such that f does not extend to $Diffeo_+(C)$. Also, $f^2 = id|_{\partial C}$ (involution).

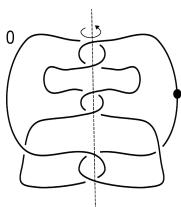
Example: the Akbulut cork.



DEF.(cf. [Akb16]) An abstract cork(C, f) is a pair where

- ► C^4 is compact, contractible, with $\partial C \neq \emptyset$
- ▶ $f \in Diffeo_+(\partial C)$ such that f does not extend to $Diffeo_+(C)$. Also, $f^2 = id|_{\partial C}$ (involution).

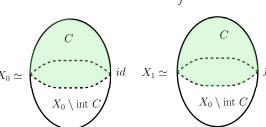
Example: the Akbulut cork.



Cork twist operation: embed $C^4 \subset X_0^4$,

Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$



Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$

 (Freedman '82) cork twists always yield homeomorphic 4-manifolds.

Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$

 (Freedman '82) cork twists always yield homeomorphic 4-manifolds.

Cork decomposition theorem.([CFHS96], [Mat95])

Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$

 (Freedman '82) cork twists always yield homeomorphic 4-manifolds.

Cork decomposition theorem.([CFHS96], [Mat95])

• (X_0, X_1) exotic pair, closed, $\pi_1(X_i) = 1$,

Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$

 (Freedman '82) cork twists always yield homeomorphic 4-manifolds.

Cork decomposition theorem.([CFHS96], [Mat95])

- (X_0, X_1) exotic pair, closed, $\pi_1(X_i) = 1$,
- ▶ then X_1 is obtained from X_0 via a cork twist.

Cork twist operation: embed $C^4 \subset X_0^4$, and construct

$$X_1 := (X_0 \setminus \operatorname{int}(C)) \bigcup_f C$$

 (Freedman '82) cork twists always yield homeomorphic 4-manifolds.

Cork decomposition theorem.([CFHS96], [Mat95])

- (X_0, X_1) exotic pair, closed, $\pi_1(X_i) = 1$,
- ▶ then X_1 is obtained from X_0 via a cork twist.

Two open problems:

detecting when a cork twist changes the smooth structure

Two open problems:

- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.

Two open problems:

- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.
- we lack a classification of corks in particular we cannot enumerate them.

Two open problems:

- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.
- we lack a classification of corks in particular we cannot enumerate them.

Protocorks are a possible way to attack these problems:

Two open problems:

- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.
- we lack a classification of corks in particular we cannot enumerate them.

Protocorks are a possible way to attack these problems:

a class of compact 4-manifolds analogous to corks, with a "protocork twist" operation

Two open problems:

- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.
- we lack a classification of corks in particular we cannot enumerate them.

Protocorks are a possible way to attack these problems:

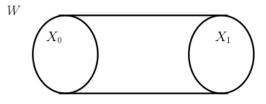
- a class of compact 4-manifolds analogous to corks, with a "protocork twist" operation
- the action of a cork depends on the action of a supporting protocork.

Two open problems:

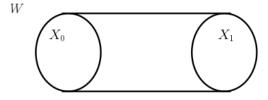
- detecting when a cork twist changes the smooth structure
 - we have only partial understanding of how corks change Seiberg-Witten invariants.
- we lack a classification of corks in particular we cannot enumerate them.

Protocorks are a possible way to attack these problems:

- a class of compact 4-manifolds analogous to corks, with a "protocork twist" operation
- the action of a cork depends on the action of a supporting protocork.
- ▶ In contrast with corks we can enumerate them.

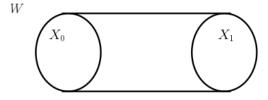


 (X_0, X_1) exotic, $(\pi_1 X_0 = 1)$, then exists $W: X_0 \to X_1$ h-cobordism



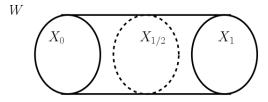
only 2-handles and 3-handles.

 (X_0, X_1) exotic, $(\pi_1 X_0 = 1)$, then exists $W: X_0 \to X_1$ h-cobordism

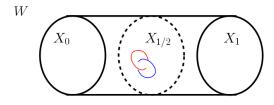


only 2-handles and 3-handles.

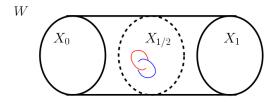
 (X_0, X_1) exotic, $(\pi_1 X_0 = 1)$, then exists $W: X_0 \rightarrow X_1$ h-cobordism



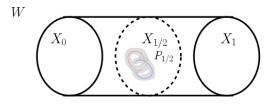
only 2-handles and 3-handles.



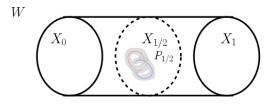
- only 2-handles and 3-handles.
- $A_i := aS(h_i^3), B_j := bS(h_i^2)$



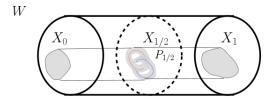
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).



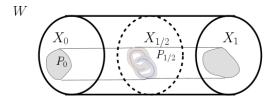
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$,



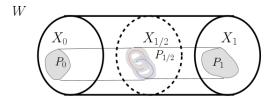
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$,



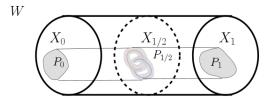
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$,



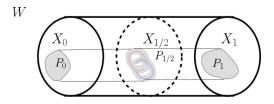
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j), P_0 \subset X_0$,



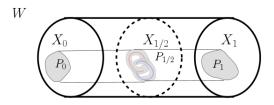
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$, $P_0 \subset X_0$, $P_1 \subset X_1$ outcoming end.



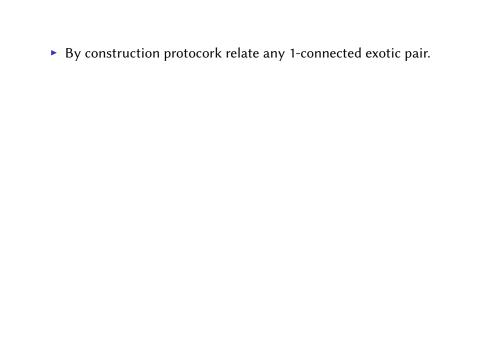
- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$, $P_0 \subset X_0$, $P_1 \subset X_1$ outcoming end.
- $\alpha \in Diffeo_{+}(\partial P_0, \partial P_1),$



- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$, $P_0 \subset X_0$, $P_1 \subset X_1$ outcoming end.
- ▶ $\alpha \in Diffeo_{+}(\partial P_0, \partial P_1)$, (P_0, P_1, α) "abstract protocork".

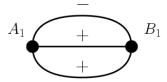


- only 2-handles and 3-handles.
- ▶ $A_i := aS(h_i^3)$, $B_j := bS(h_j^2)$ then $A_i \cdot B_j = \delta_{ij}$. And $A_i \cap A_j = \emptyset$, $A_i^2 = 0$ (same for B_i s).
- ▶ $P_{1/2} \subset X_{1/2}$ tubular neighb. of $\bigcup_{i,j} (A_i \cup B_j)$, $P_0 \subset X_0$, $P_1 \subset X_1$ outcoming end.
- ▶ $\alpha \in Diffeo_{+}(\partial P_0, \partial P_1), (P_0, P_1, \alpha)$ "abstract protocork".
- ► $X_0 \simeq M \bigcup P_0, X_1 \simeq M \bigcup_{\alpha} P_1$ "protocork twist".

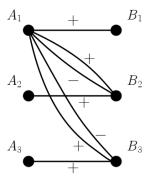


- ▶ By construction protocork relate any 1-connected exotic pair.
- ► The intersection graph of the 2-spheres, determines (P_0, P_1, α) up to isomorphism \Rightarrow can enumerate them

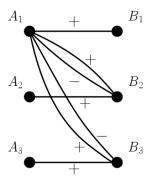
- ▶ By construction protocork relate any 1-connected exotic pair.
- ► The intersection graph of the 2-spheres, determines (P_0, P_1, α) up to isomorphism \Rightarrow can enumerate them



- ▶ By construction protocork relate any 1-connected exotic pair.
- ► The intersection graph of the 2-spheres, determines (P_0, P_1, α) up to isomorphism \Rightarrow can enumerate them

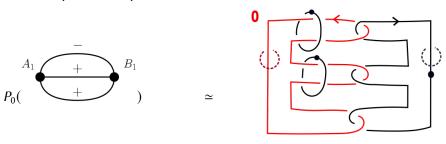


- ▶ By construction protocork relate any 1-connected exotic pair.
- ► The intersection graph of the 2-spheres, determines (P_0, P_1, α) up to isomorphism \Rightarrow can enumerate them

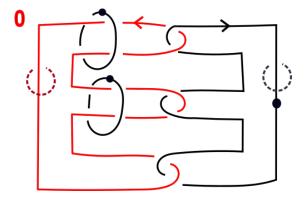


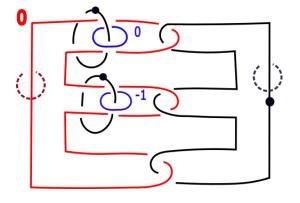
▶ If the graph is symmetric the protocork is encoded by a pair $(P_0, \tau), \tau : \partial P_0 \rightarrow \partial P_0$.

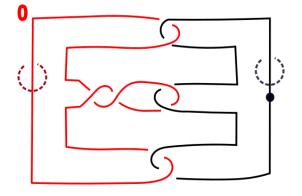
- ▶ By construction protocork relate any 1-connected exotic pair.
- ► The intersection graph of the 2-spheres, determines (P_0, P_1, α) up to isomorphism \Rightarrow can enumerate them

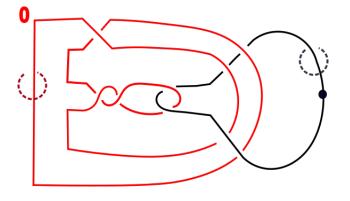


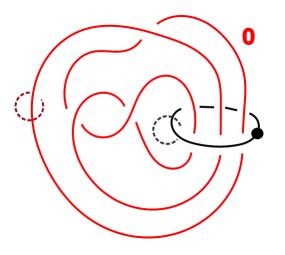
▶ If the graph is symmetric the protocork is encoded by a pair $(P_0, \tau), \tau : \partial P_0 \rightarrow \partial P_0$.

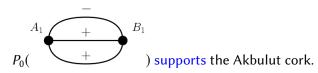


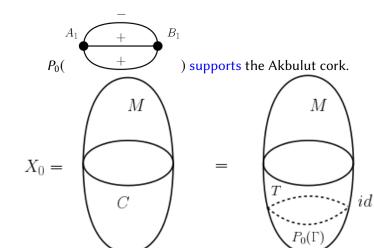


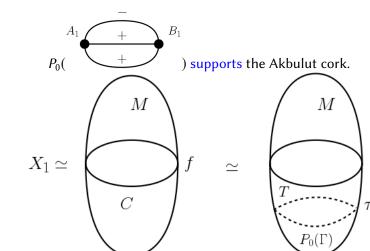


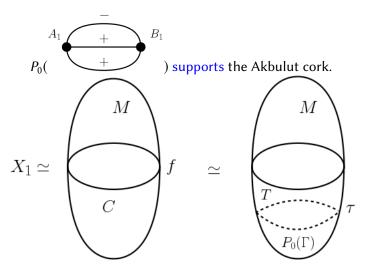












Prop. Any cork (C, f) admits a supporting protocork.

Problem: does a protocork twist change the Seiberg-Witten invariants?

To analyse this we use Monopole Floer homology (Kronheimer-Mrowka '07). Recap:

▶ To Y^3 oriented, closed 3-manifold we associate $\mathbb{Z}[[U]]$ -modules

$$\widecheck{HM}_{\bullet}(Y)$$
, $\widehat{HM}_{\bullet}(Y)$, $\overline{HM}_{\bullet}(Y)$

- $\blacktriangleright \text{ Ex. } \widehat{HM}_{\bullet}(\mathbb{S}^3) \simeq \mathbb{Z}[[U]], \ \widecheck{HM}_{\bullet}(\mathbb{S}^3) \simeq \frac{\mathbb{Z}[U^{-1}, U]]}{U \cdot \mathbb{Z}[[U]]},$
- W^4 cobordism $W: Y_0 \to Y_1$, induces

$$\widehat{HM}_{\bullet}(W): \widehat{HM}_{\bullet}(Y_0) \to \widehat{HM}_{\bullet}(Y_1)$$

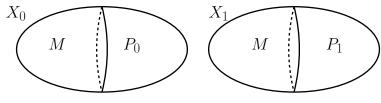
 $\mathbb{Z}[[U]]$ -homomorphism.

• (P_0, P_1, id) abstract protocork, $Y = \partial P_0$

- (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \, \pi_1(X_0) = \{1\}, \, b^+(X_0) \geq 2,$

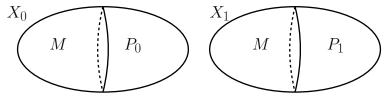
- ▶ (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \, \pi_1(X_0) = \{1\}, \, b^+(X_0) \geq 2,$
- ► $X_1 = M \bigcup_Y P_1$ result of protocork twist

- (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \, \pi_1(X_0) = \{1\}, \, b^+(X_0) \geq 2,$
- ► $X_1 = M \bigcup_Y P_1$ result of protocork twist



▶ $\mathfrak{s}_M \in Spin^c(M)$ with $\mathfrak{s}_M|_Y$ trivial induces $\mathfrak{s}_i \in Spin^c(X_i)$

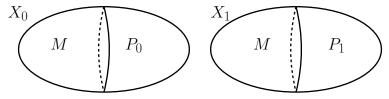
- (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \, \pi_1(X_0) = \{1\}, \, b^+(X_0) \geq 2,$
- ► $X_1 = M \bigcup_Y P_1$ result of protocork twist



• $\mathfrak{s}_M \in Spin^c(M)$ with $\mathfrak{s}_M|_Y$ trivial induces $\mathfrak{s}_i \in Spin^c(X_i)$

Define the difference element $\Delta \in \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2)$

- (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \, \pi_1(X_0) = \{1\}, \, b^+(X_0) \geq 2,$
- ► $X_1 = M \bigcup_Y P_1$ result of protocork twist

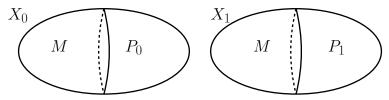


• $\mathfrak{s}_M \in Spin^c(M)$ with $\mathfrak{s}_M|_Y$ trivial induces $\mathfrak{s}_i \in Spin^c(X_i)$

Define the difference element $\Delta \in HM_{\bullet}(Y; \mathbb{Z}/2)$

$$\Delta := \widehat{HM}_{\bullet}(P_0 \setminus \mathbb{B}^4)(\hat{1}) - \widehat{HM}_{\bullet}(P_1 \setminus \mathbb{B}^4)(\hat{1}) \mod 2$$

- (P_0, P_1, id) abstract protocork, $Y = \partial P_0$
- $X_0 = M \bigcup_Y P_0, \pi_1(X_0) = \{1\}, b^+(X_0) \ge 2,$
- ► $X_1 = M \bigcup_Y P_1$ result of protocork twist



▶ $\mathfrak{s}_M \in Spin^c(M)$ with $\mathfrak{s}_M|_Y$ trivial induces $\mathfrak{s}_i \in Spin^c(X_i)$

Define the difference element $\Delta \in \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2)$

Kronheimer-Mrowka:

$$SW(X_0, \mathfrak{s}_0) - SW(X_1, \mathfrak{s}_1) = \mathcal{L}_{M,\mathfrak{s}_M}(\Delta) \mod 2$$

where \mathcal{L}_{M, s_M} is \mathbb{Z} -homomorphisms.

► Morgan and Szabó in '99 define a number $n_{MS} \ge 2$ depending on the geometry of $Y = \partial P_0$ and choice of perturbations,

- ► Morgan and Szabó in '99 define a number $n_{MS} \ge 2$ depending
- on the geometry of $Y = \partial P_0$ and choice of perturbations,

 $d(\mathfrak{s}_M) \geq n_{MS} \Longrightarrow SW(X_0, \mathfrak{s}_0) - SW(X_1, \mathfrak{s}_1) = 0$

Let $Y = \partial P_0 = \partial P_1$,

Let
$$Y = \partial P_0 = \partial P_1$$
,

1.
$$\Delta \in HM^{red}(Y; \mathbb{Z}/2) < \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2),$$

Let
$$Y = \partial P_0 = \partial P_1$$
,

- 1. $\Delta \in HM^{red}(Y; \mathbb{Z}/2) < \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2),$
- 2. let d_{Δ} be the *U*-torsion order of Δ , then $n_{MS} \geq 2d_{\Delta}$,

Let
$$Y = \partial P_0 = \partial P_1$$
,

- 1. $\Delta \in HM^{red}(Y; \mathbb{Z}/2) < \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2),$
- 2. Let d_{Δ} be the *U*-torsion order of Δ , then $n_{MS} \geq 2d_{\Delta}$,

Corollary 1:

$$d(\mathfrak{s}_M) \ge 2d_{\Lambda} \Longrightarrow SW(X_0,\mathfrak{s}_0) - SW(X_1,\mathfrak{s}_1) = 0 \mod 2.$$

Note: d_{Δ} depends only on the topology of Y.

Let
$$Y = \partial P_0 = \partial P_1$$
,

- 1. $\Delta \in HM^{red}(Y; \mathbb{Z}/2) < \widehat{HM}_{\bullet}(Y; \mathbb{Z}/2),$
- 2. let d_{Δ} be the *U*-torsion order of Δ , then $n_{MS} \geq 2d_{\Delta}$,

Corollary 1:

$$d(\mathfrak{s}_M) \ge 2d_{\Lambda} \Longrightarrow SW(X_0,\mathfrak{s}_0) - SW(X_1,\mathfrak{s}_1) = 0 \mod 2.$$

Note: d_{Δ} depends only on the topology of Y.

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\hat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\hat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_*x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\hat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

Examples (originally proved by Lin-Ruberman-Saveliev '18):

Let (C, f) be the Akbulut cork,

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\hat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

- Let (C, f) be the Akbulut cork,
- ► $HM^{red}(\partial C) \simeq \mathbb{Z}^2_{(-1)}$, thus $ord(\Delta_C) = 1$.

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\widehat{1}) \in \widehat{HM}_{\bullet}(\partial C)$,
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

- ▶ Let (*C*, *f*) be the Akbulut cork,
- ► $HM^{red}(\partial C) \simeq \mathbb{Z}_{(-1)}^2$, thus $\operatorname{ord}(\Delta_C) = 1$.
- ▶ (\overline{C}, f) (changing orientation), is a cork as well,

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\widehat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

- Let (C, f) be the Akbulut cork,
- ► $HM^{red}(\partial C) \simeq \mathbb{Z}^2_{(-1)}$, thus $ord(\Delta_C) = 1$.
- ▶ (\overline{C}, f) (changing orientation), is a cork as well,
- ► $HM^{red}(-\partial C) \simeq \mathbb{Z}^2_{(0)}$, thus $\operatorname{ord}(\Delta_{\overline{C}}) = 0$

Corollary 2: Let (C, f) be a cork,

- ▶ let $x := \widehat{HM}_{\bullet}(C \setminus \mathbb{B}^4)(\hat{1}) \in \widehat{HM}_{\bullet}(\partial C),$
- ▶ define $\Delta_C := x f_* x \mod 2 \in \widehat{HM}_{\bullet}(\partial C; \mathbb{Z}/2)$.

Then Δ_C belongs to $HM^{red}_{-1}(\partial C; \mathbb{Z}/2)$, in particular is U-torsion, thus $\operatorname{ord}(\Delta_C)$ is an invariant of corks.

- ▶ Let (*C*, *f*) be the Akbulut cork,
- ► $HM^{red}(\partial C) \simeq \mathbb{Z}^2_{(-1)}$, thus $ord(\Delta_C) = 1$.
- ▶ (\overline{C}, f) (changing orientation), is a cork as well,
- ► $HM^{red}(-\partial C) \simeq \mathbb{Z}_{(0)}^2$, thus $\operatorname{ord}(\Delta_{\overline{C}}) = 0$
- ► Hence (\overline{C}, f) cannot change SW-invariants mod 2,

Bibliography I

An exotic 4-manifold.

Journal of Differential Geometry, 1991.

Selman Akbulut.

4-manifolds, volume 25.

Oxford University Press, 2016.

C.L. Curtis, M.H. Freedman, W. Hsiang, and R. Stong.

A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds.

Inventiones mathematicae, 123(2):343–348, 1996.

Rostislav Matveyev.

A decomposition of smooth simply-connected h-cobordant 4-manifolds.

Journal of Differential Geometry, 44:571–582, 1995.

Bibliography II

J. W. Morgan and Z. Szabó.

Complexity of 4-dimensional h-cobordisms.

Inventiones mathematicae, 136:273-286, 1999.

Nathan Sunukjian.

Group actions, cobordisms, and other aspects of 4-manifold theory through the eyes of floer homology.

PhD thesis, Michigan State University, 2010.