
Protocorks and exotic 4-manifolds

Roberto Ladu (MPIM)
ladu@mpim-bonn.mpg.de

June 6, 2023
Geometric Topology, Arts and Science



Abstract corks

DEF.(cf. [Akb16]) An abstract cork (C, f ) is a pair where
I C4 is compact, contractible, with ∂C , �
I f ∈ Di�eo+(∂C) such that f does not extend to Di�eo+(C).

Also, f 2 = id |∂C (involution).

Example: the Akbulut cork.
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The cork twist operation
Cork twist operation: embed C4 ⊂ X 4

0 ,

and construct

X1 := (X0 \ int(C))
⋃
f

C

I (Freedman ’82) cork twists always yield homeomorphic
4-manifolds.

Cork decomposition theorem.([CFHS96], [Mat95])
I (X0,X1) exotic pair, closed, π1(Xi) = 1,
I then X1 is obtained from X0 via a cork twist.
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Protocorks: motivation

Two open problems:
I detecting when a cork twist changes the smooth structure

I we have only partial understanding of how corks change
Seiberg-Wi�en invariants.

I we lack a classification of corks in particular we cannot
enumerate them.

Protocorks are a possible way to a�ack these problems:
I a class of compact 4-manifolds analogous to corks, with a

”protocork twist” operation
I the action of a cork depends on the action of a supporting
protocork.

I In contrast with corks we can enumerate them.
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Protocorks: implicit definition

(X0,X1) exotic, (π1X0 = 1), then exists W : X0 → X1 h-cobordism

I only 2-handles and 3-handles.
I Ai := aS(h3

i ), Bj := bS(h2
j ) then Ai · Bj = δij . And Ai ∩ Aj = �,

A2
i = 0 (same for Bis).

I P1/2 ⊂ X1/2 tubular neighb. of
⋃

i, j(Ai ∪ Bj), P0 ⊂ X0 , P1 ⊂ X1

outcoming end.
I α ∈ Di�eo+(∂P0, ∂P1), (P0, P1,α) “abstract protocork ”.
I X0 ' M

⋃
P0, X1 ' M

⋃
α P1 “protocork twist”.
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I By construction protocork relate any 1-connected exotic pair.

I The intersection graph of the 2-spheres, determines (P0, P1,α)
up to isomorphism⇒ can enumerate them

I If the graph is symmetric the protocork is encoded by a pair
(P0,τ ), τ : ∂P0 → ∂P0.
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I Problem: does a protocork twist change the Seiberg-Wi�en
invariants?

To analyse this we use Monopole Floer homology
(Kronheimer-Mrowka ’07). Recap:
I To Y 3 oriented, closed 3-manifold we associate Z[[U]]-moduleŝ

HM•(Y ), ĤM•(Y ), HM•(Y )

I Ex. ĤM•(S3) ' Z[[U]],

̂
HM•(S3) '

Z[U−1,U]]
U ·Z[[U]] ,

I W 4 cobordism W : Y0 → Y1, induces

ĤM•(W ) : ĤM•(Y0) → ĤM•(Y1)

Z[[U]]-homomorphism.



Consider
I (P0, P1, id) abstract protocork, Y = ∂P0

I X0 = M
⋃

Y P0, π1(X0) = {1}, b+(X0) ≥ 2,
I X1 = M

⋃
Y P1 result of protocork twist

M

X0

P0

X1

M P1

I sM ∈ Spinc(M) with sM |Y trivial induces si ∈ Spinc(Xi)

Define the di�erence element ∆ ∈ ĤM•(Y ;Z/2)
I ∆ := ĤM•(P0 \ B

4)(1̂) − ĤM•(P1 \ B
4)(1̂) mod 2

Kronheimer-Mrowka:

SW (X0, s0) − SW (X1, s1) = LM,sM(∆) mod 2

where LM,sM is Z-homomorphisms.
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I Morgan and Szabó in ’99 define a number nMS ≥ 2 depending
on the geometry of Y = ∂P0 and choice of perturbations,

I they show that

d(sM) ≥ nMS =⇒ SW (X0, s0) − SW (X1, s1) = 0
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Theorem (L. ’22)
Let Y = ∂P0 = ∂P1,

1. ∆ ∈ HMred (Y ;Z/2) < ĤM•(Y ;Z/2),

2. let d∆ be the U-torsion order of ∆, then nMS ≥ 2d∆,

Corollary 1:

d(sM) ≥ 2d∆ =⇒ SW (X0, s0) − SW (X1, s1) = 0 mod 2.

Note: d∆ depends only on the topology of Y .
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An invariant of corks

Corollary 2: Let (C, f ) be a cork,
I let x := ĤM•(C \ B4)(1̂) ∈ ĤM•(∂C),
I define ∆C := x − f∗x mod 2 ∈ ĤM•(∂C;Z/2).

Then ∆C belongs to HMred
−1 (∂C;Z/2), in particular is U-torsion,

thus ord(∆C) is an invariant of corks.

Examples (originally proved by Lin-Ruberman-Saveliev ’18):
I Let (C, f ) be the Akbulut cork,
I HMred (∂C) ' Z2

(−1), thus ord(∆C) = 1.

I (C, f ) (changing orientation), is a cork as well,
I HMred (−∂C) ' Z2

(0), thus ord(∆C) = 0

I Hence (C, f ) cannot change SW-invariants mod 2,
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