L-spaces, taut foliations and fibered hyperbolic two-bridge links

Diego Santoro 09 June 2023

Scuola Normale Superiore, Pisa

PLAN OF THE TALK

- (I) Introduction to the L-space conjecture
- (II) The conjecture and two-bridge links
- (III) Application to Whitehead doubles

The L-space conjecture.

HEEGAARD FLOER HOMOLOGY

Annals of Mathematics, 159 (2004), 1027-1158

Holomorphic disks and topological invariants for closed three-manifolds

By Peter Ozsváth and Zoltán Szabó*

Abstract

The aim of this article is to introduce certain topological invariants for closed, oriented three-manifolds Y, equipped with a Spine structure. Given a Heegaard splitting of $Y = U_0 \cup_{\Sigma} U_1$, these theories are variants of the Lagrangian Floer homology for the g-fold symmetric product of Σ relative to certain totally real subspaces associated to U_0 and U_1 .

 M^3 closed oriented $\longrightarrow \widehat{HF}(M)$, finite dim. \mathbb{F}_2 -vector space

L-SPACES

Fact: For a rational homology sphere M, $\dim \widehat{HF}(M) \geq |H_1(M,\mathbb{Z})|$.

L-SPACES

Fact: For a rational homology sphere M, $\dim \widehat{HF}(M) \geq |H_1(M,\mathbb{Z})|$.

Definition: M is an L-space if $\dim \widehat{HF}(M) = |H_1(M, \mathbb{Z})|$.

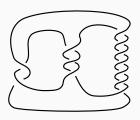
L-SPACES

Fact: For a rational homology sphere M, $\dim \widehat{HF}(M) \geq |H_1(M,\mathbb{Z})|$.

Definition: M is an L-space if $\dim \widehat{HF}(M) = |H_1(M, \mathbb{Z})|$.

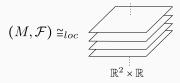
Examples:

- · S^3 ;
- · lens spaces;
- M with finite fundamental group;
- · Weeks manifold;
- · r-surgery on P(-2,3,7), for all $r \in [9,\infty]$.



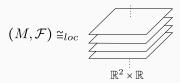
FOLIATIONS

Definition: A foliation \mathcal{F} on M^3 is a decomposition of M into injectively immersed surfaces (leaves) such that



FOLIATIONS

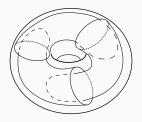
Definition: A foliation \mathcal{F} on M^3 is a decomposition of M into injectively immersed surfaces (leaves) such that



Theorem (Lickorish): Every closed oriented M³ supports a foliation.

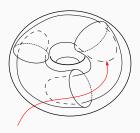
FROM REEBLESS TO TAUT

The foliations constructed in Lickorish theorem contain *Reeb* components.



FROM REEBLESS TO TAUT

The foliations constructed in Lickorish theorem contain *Reeb* components.



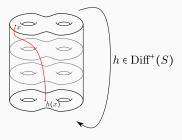
TAUT FOLIATIONS

Definition: A foliation \mathcal{F} is *taut* if every leaf intersects a closed transversal.

TAUT FOLIATIONS

Definition: A foliation \mathcal{F} is *taut* if every leaf intersects a closed transversal.

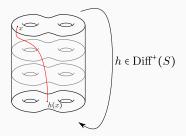
Example:



TAUT FOLIATIONS

Definition: A foliation \mathcal{F} is *taut* if every leaf intersects a closed transversal.

Example:



Theorem (Novikov '65, Palmeira '78): If $M \neq S^2 \times S^1$ supports a coorientable taut foliation \mathcal{F} , then the leaves of \mathcal{F} are incompressible and $\widetilde{M} \cong \mathbb{R}^3$.

Corollary: S³, lens spaces and M with finite fundamental group *do not* support coorientable taut foliations.

Corollary: S³, lens spaces and M with finite fundamental group *do not* support coorientable taut foliations.

Theorem (Ozsváth-Szabó '04): If M supports a coorientable taut foliation, then M is not an L-space.

Corollary: S³, lens spaces and M with finite fundamental group *do not* support coorientable taut foliations.

Theorem (Ozsváth-Szabó '04): If M supports a coorientable taut foliation, then M is not an L-space.

L-space conjecture (Juhász '15):

Let M be an irreducible $\mathbb{Q}HS^3$. The following are equivalent:

- (1) M supports a coorientable taut foliation (CTF);
- (2) M is not an L-space (NLS);

Corollary: S³, lens spaces and M with finite fundamental group *do not* support coorientable taut foliations.

Theorem (Ozsváth-Szabó '04): If M supports a coorientable taut foliation, then M is not an L-space.

L-space conjecture (Juhász '15):

Let M be an irreducible $\mathbb{Q}HS^3$. The following are equivalent:

- (1) M supports a coorientable taut foliation (CTF);
- (2) M is not an L-space (NLS);

Theorem: The conjecture is true for graph manifolds.

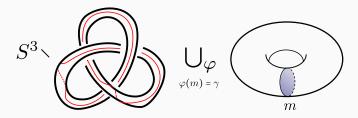
The conjecture and two-bridge links

DEHN SURGERY

K knot in S^3 and $\gamma \in \partial \nu K$ unoriented essential simple closed curve $S^3_{\gamma}(K)$ surgery on K along γ

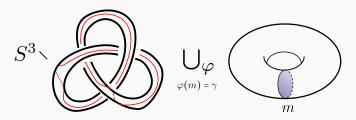
DEHN SURGERY

K knot in S^3 and $\gamma \in \partial \nu K$ unoriented essential simple closed curve $S^3_{\gamma}(K)$ surgery on K along γ

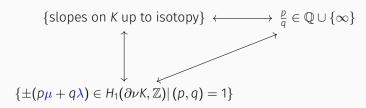


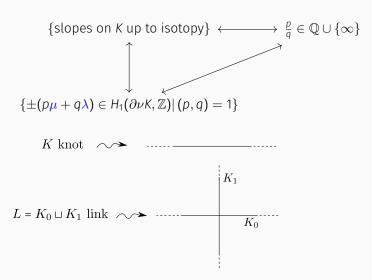
DEHN SURGERY

K knot in S^3 and $\gamma \in \partial \nu K$ unoriented essential simple closed curve $S^3_{\gamma}(K)$ surgery on K along γ



Theorem (Lickorish, Wallace): Every closed orientable M^3 can be obtained as surgery on some link in S^3 .





Theorem: If K is a nontrivial L-space knot (i.e. $S_r^3(K)$ is an L-space for some positive $r \in \mathbb{Q}$) then:

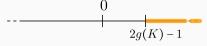
· K is fibered [Ghiggini '08, Ni '07];

Theorem: If K is a nontrivial L-space knot (i.e. $S_r^3(K)$ is an L-space for some positive $r \in \mathbb{Q}$) then:

- · K is fibered [Ghiggini '08, Ni '07];
- · K is strongly quasipositive [Hedden '10];

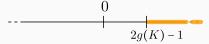
Theorem: If K is a nontrivial L-space knot (i.e. $S_r^3(K)$ is an L-space for some positive $r \in \mathbb{Q}$) then:

- · K is fibered [Ghiggini '08, Ni '07];
- · K is strongly quasipositive [Hedden '10];
- · $S_t^3(K)$ is an L-space iff $t \in [2g(K) 1, \infty]$ [KMOS '07].



Theorem: If K is a nontrivial L-space knot (i.e. $S_r^3(K)$ is an L-space for some positive $r \in \mathbb{Q}$) then:

- · K is fibered [Ghiggini '08, Ni '07];
- · K is strongly quasipositive [Hedden '10];
- · $S_t^3(K)$ is an L-space iff $t \in [2g(K) 1, \infty]$ [KMOS '07].



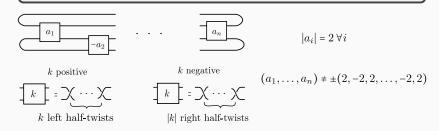
Roberts '01: The conjecture holds for all surgeries on the trefoil knot and the figure eight knot.

Krishna '20: The conjecture holds for all surgeries on an infinite family of hyperbolic *L*-space knots.

THE MAIN THEOREM

Theorem A (S. '23):

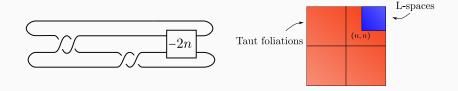
Let *L* be a fibered hyperbolic two-bridge link and let *M* be a manifold obtained as Dehn surgery on *L*. Then *M* admits a coorientable taut foliation if and only if *M* is not an L-space.



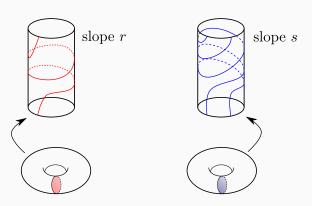
A CLASSIFICATION RESULT

Theorem B (S. '23):

If a fibered hyperbolic two-bridge link L has a (finite) surgery that is an L-space, then L is isotopic, as unoriented link, to one of the links $\{L_n\}_{n\geq 1}$ or their mirrors.



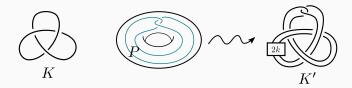
Remark: The foliation on the manifold $S_{r,s}^3(L)$ is obtained by extending a taut foliation on the exterior of L intersecting the two boundary components in parallel curves of slope r and s, respectively.



Application to Whitehead doubles

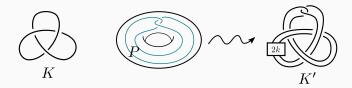
WHITEHEAD DOUBLES

Definition: Let $P \subset \mathbb{D}^2 \times S^1$ be the Whitehead pattern and let $\Phi : \mathbb{D}^2 \times S^1 \to \nu K$ be an orientation preserving diffeomorphism, where K is a knot in S^3 . The knot $K' = \Phi(P)$ is a Whitehead double of K.



WHITEHEAD DOUBLES

Definition: Let $P \subset \mathbb{D}^2 \times S^1$ be the Whitehead pattern and let $\Phi : \mathbb{D}^2 \times S^1 \to \nu K$ be an orientation preserving diffeomorphism, where K is a knot in S^3 . The knot $K' = \Phi(P)$ is a Whitehead double of K.



Fact: Whitehead doubles of nontrivial knots do not have (nontrivial) L-space surgeries.

TAUT FOLIATIONS AND WHITEHEAD DOUBLES

Theorem C (S. '23):

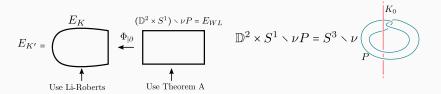
Let K be a nontrivial knot and let K' be a Whitehead double of K. Then all nontrivial surgeries on K' support a coorientable taut foliation.

TAUT FOLIATIONS AND WHITEHEAD DOUBLES

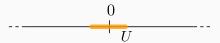
Theorem C (S. '23):

Let K be a nontrivial knot and let K' be a Whitehead double of K. Then all nontrivial surgeries on K' support a coorientable taut foliation.

Sketch of the proof.



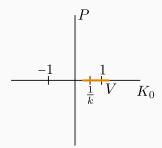
Li-Roberts '14: $\exists U$ neighbourhood of 0 such that all slopes on K in U are realised by a CTF in the exterior of K.



Li-Roberts '14: $\exists U$ neighbourhood of 0 such that all slopes on K in U are realised by a CTF in the exterior of K.

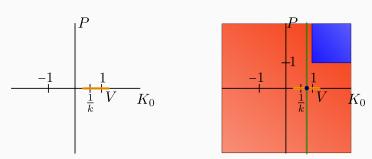


The map $\Phi_{|\partial}$ identifies U with a neighbourhood V of $\frac{1}{k} \in \mathbb{Q} \cup \{\infty\} = \{\text{Slopes on } K_0\}, \text{ for some } k \in \mathbb{Z}.$



Li-Roberts '14: $\exists U$ neighbourhood of 0 such that all slopes on K in U are realised by a CTF in the exterior of K.

The map $\Phi_{|\partial}$ identifies U with a neighbourhood V of $\frac{1}{k} \in \mathbb{Q} \cup \{\infty\} = \{\text{Slopes on } K_0\}, \text{ for some } k \in \mathbb{Z}.$



FOR THE GENERAL STATEMENT OF THE L-SPACE CONJECTURE, FOR MORE DETAILS, AND MORE PICTURES... SEE YOU AT THE POSTER SESSION!