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Notion of branched covering

p : X n → Y n

branched covering def⇐⇒ p is proper open finite PL map of compact
n-manifolds.

• Bp ⊂ Y branch set of p: max subspace over which p fails to
be a loc. homeo (codim-2 subcomplex).

• p| : X − p−1(Bp)→ Y − Bp ordinary covering space.
• ωp : π1(Y − Bp)→ Σd monodromy (p is d-fold).
• p uniquely determined by (Y ,Bp, ωp), up to homeo.

• p simple def⇐⇒ {meridians of Bp}
ωp−→ {transpositions}.
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Some classical results

Theorem (Hilden-Hirsch-Montesinos 1974)
Any closed oriented M3 is simple 3-fold b.c.

p : M3 −→ S3

branched over a link Bp ⊂ S3.

Connections with other structures
• Open book decompositions (Myers 1978).
• Crystallizations (Ferri 1979; Casali, Cavicchioli,

Grasselli 1989).
• Contact structures (Gonzalo 1987; Giroux 2000).



Some classical results

Theorem (Piergallini 1995)
Any closed oriented PL M4 is a simple 4-fold b.c.

p : M4 −→ S4

branched over a loc. flat immersed surface Bp ⊂ S4.

(Bp embedded and d = 5, Iori & Piergallini 2002).

Remark
If M4 admits handle decomp. with no 1-handles can take d = 3
and Bp loc. flat except at a conical singularity
(Blair, Cahn, Kjuchukova & Meier, to appear).



Ribbon surface

Ribbon surface
(S , ∂S) ⊂ (B4,S3)

push in of immersed ribbon surface S ′ ∈ S3 having only ribbon
intersections as possible singularities.

Remark
∂S ⊂ S3 knot or link.



Ribbon fillable branched covering

Simple branched covering

p : M3 b.c.−→ S3

branched over link that can be extended to simple b. c.

q : W 4 → B4

branched over ribbon surface, ∂W = M, ∂q = q|∂W = p,
∂Bq = Bp.



One more classical result

Theorem (Montesinos 1978)
Any compact oriented 4-dim 2-handlebody

W 4 = H0 ∪m H1 ∪n H2

is a simple 3-fold b.c.

p : W 4 −→ B4

branched over a ribbon surface Bp ⊂ B4.

Remark
By definition p|∂W : ∂W → S3 is ribbon fillable.



The Cobordism Lemma

Cobordism Lemma (Piergallini-Z. 2019)
∀ p0, p1 : M3 → S3 d-fold ribbon fillable branched covers, ∀ d ⩾ 5
⇒ ∃ simple covering

q : M3 × [0, 1] −→ S3 × [0, 1]

branched over a loc. flat surface, s. t.

p0 = q|M×0 and p1 = q|M×1.



Sketch of proof

p0, p1 : M3 → S3 can be related by finitely many Montesinos
moves M1 & M2 and isotopy.

(Conjectured by Montesinos 1985,
proved by Bobtcheva & Piergallini 2012)



Sketch of proof

Start with
p0 × id : M3 × [0, 1] −→ S3 × [0, 1]

add cusps for M1’s, nodes for M2’s, movies for isotopy.



Sketch of proof

Removing cusps (Piergallini 1995) and nodes (Iori & Piergallini
2002) yields the desired cobordism branched covering (here we use
ribbon fillable).

Remark
By allowing nodes as singularities of Bq one can take d = 4.



Branched coverings of B4

Theorem (Piergallini-Z. 2019)
∀ cpt connected orient. PL W 4 with connected ∂W, ∀ d ⩾ 5,
∃ simple d-fold branched covering

p : W 4 −→ B4

with Bp ⊂ B4 loc. flat surface.
We can assume ∂p : ∂W → S3 to coincide with any given ribbon
fillable branched covering.



Branched coverings of CP2

Theorem (Piergallini-Z. 2021)
For any closed oriented PL M4

∃ p : M4 b.c.−→ CP2 ⇐⇒ b+
2 (M

4) ⩾ 1.

We can assume Bp ⊂ CP2 loc. flat surf. and d ⩽ 9.

Remark
b±2 = (b2 ± σ)/2 ∈ N.



Proof of ∃ p ⇒ b+
2 ⩾ 1

If ∃ d-fold b.c.
p : M4 −→ CP2

isotope Bp ⊂ CP2 to be transversal to CP1.

F = p−1(CP1) ⊂ M4

F · F = d ̸= 0 ⇒ [F ] ̸= 0 in H2(M)/Tor.



Proof of b+
2 ⩾ 1⇒ ∃ p

∃ orient. connect. surf. F ⊂ M4 s. t. F · F ⩾ 1.
Can assume d = F · F ⩾ 5 (otherwise take F ′ ∈ 3[F ]).
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Glue by Cobordism Lemma

L = CP1

N = Tub Nbrd

e = d

e = 1

q : F → CP1 branched over g(F ) + d − 1 pairs of points ⇒ ∂q1
branched over pairs of Hopf links bounding Hopf bands ⇒ ∂q1
ribbon fillable.



More basic 4-manifolds

Theorem (Piergallini-Z. 2019)
For any closed oriented PL M4

∃ p : M4 b.c.−→ N4

with
• N = #m CP#n CP ⇐⇒ b+

2 (M) ⩾ m and b−2 (M) ⩾ n.

• N = #n(S
2 × S2) ⇐⇒ b+

2 (M) ⩾ n and b−2 (M) ⩾ n.
• N = #n(S

3 × S1) ⇐⇒ π1(M)↠ Fn.
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Application to quasiregular ellipticity

b±2 (T
4) = 3 ⇒ ∃ T 4 b.c.−→ #n(S

2 × S2) for n = 1, 2, 3.

Case n = 1 obvious: T 4 = T 2 × T 2 p×p−→ S2 × S2.

Case n = 2 proved by Rickman (2006).

Case n = 3 not previously known.

Definition
Mm is quasiregularly elliptic if ∃ f : Rm → Mm s. t.

∥D f ∥m ⩽ K detD f .

Corollary
#n(S

2 × S2) quasiregularly elliptic for n ⩽ 3

(False for all n ⩾ 4, Prywes 2019).

Proof.
R4 cover−→ T 4 b.c.−→ #n(S

2 × S2).



Pairs (M4,N2) with N · N ̸= 0

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. loc. flat pair (M4,N2) s. t.

d = |N · N| ⩾ 4

there is a simple d-fold covering

p : (M4,N2) −→ (±CP2,CP1)

branched over a (nodal) surface transversal to CP1, with
± = sgn(N · N).



Pairs (M4,N2) with N · N = 0

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. loc. flat pair (M4,N2) s. t.

N · N = 0

and for any d ⩾ 4 there is a simple d-fold covering

p : (M4,N2) −→ (S4,S2)

branched over a (nodal) surface transversal to S2.

Special case
p : (S4,N2)

b. c.−→ (S4,S2) for every 2-knot N2 ⊂ S4.



Pairs (M4,N3)

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. pair (M4,N3) there is a d-fold simple
b.c.

p : (M4,N3) −→ (S4,S3).

The branch set can be taken an immersed (embedded for d ⩾ 5)
surface transversal to S3 ⊂ S4.

Remark
If N3 disconnects M4 we can assume N3 = p−1(S3).



Embeddings of S3 in S4

A remarkable case is that of

S3 ∼= Σ3 ⊂
PL

S4.

4D PL Schoenflies Conjecture

(S4, Σ3) ∼=
PL

(S4,S3).

Remark
The topological version is well-known to be true (Brown 1960)

(S4, Σ3) ∼=
C0

(S4,S3).



Embeddings of S3 in S4

Corollary (Piergallini-Z. 2019)
∀S3 ∼= Σ3 ⊂

PL
S4 and ∀ d ⩾ 4 there is a d-fold simple covering

p : (S4, Σ3) −→ (S4,S3)

branched over a (nodal) surface transversal to S3.



Concluding remarks

• PL = Diff in dim 4 ⇒ similar results in the C∞-category.
• Closed symplectic 4-manifolds are coverings of CP2 branched

over symplectic surface with cusps and nodes (Auroux 2000).
• Nodes become removable by assuming d ⩾ 5
⇒ non-singular branch surface.


