Constructions of branched coverings in dimension four

Daniele Zuddas

Università di Trieste

joint with

Riccardo Piergallini

Università di Camerino

Geometric Topology, Art and Science Reggio Emilia 9–10 June 2023

$$p: X^n \to Y^n$$

branched covering $\stackrel{\text{def}}{\Longleftrightarrow} p$ is proper open finite PL map of compact n-manifolds.

 B_p ⊂ Y branch set of p: max subspace over which p fails to be a loc. homeo (codim-2 subcomplex).

$$p: X^n \to Y^n$$

branched covering $\stackrel{\text{def}}{\Longleftrightarrow} p$ is proper open finite PL map of compact p-manifolds.

- B_p ⊂ Y branch set of p: max subspace over which p fails to be a loc. homeo (codim-2 subcomplex).
- $p_{\parallel}: X p^{-1}(B_p) \to Y B_p$ ordinary covering space.

$$p: X^n \to Y^n$$

branched covering $\stackrel{\text{def}}{\Longleftrightarrow} p$ is proper open finite PL map of compact n-manifolds.

- B_p ⊂ Y branch set of p: max subspace over which p fails to be a loc. homeo (codim-2 subcomplex).
- $p_1: X p^{-1}(B_p) \to Y B_p$ ordinary covering space.
- $\omega_p : \pi_1(Y B_p) \to \Sigma_d$ monodromy (p is d-fold).

$$p: X^n \to Y^n$$

branched covering $\stackrel{\text{def}}{\Longleftrightarrow} p$ is proper open finite PL map of compact n-manifolds.

- B_p ⊂ Y branch set of p: max subspace over which p fails to be a loc. homeo (codim-2 subcomplex).
- $p_{|}: X p^{-1}(B_p) \to Y B_p$ ordinary covering space.
- $\omega_p : \pi_1(Y B_p) \to \Sigma_d$ monodromy (p is d-fold).
- p uniquely determined by (Y, B_p, ω_p) , up to homeo.

$$p: X^n \to Y^n$$

branched covering $\stackrel{\text{def}}{\Longleftrightarrow} p$ is proper open finite PL map of compact n-manifolds.

- $B_p \subset Y$ branch set of p: max subspace over which p fails to be a loc. homeo (codim-2 subcomplex).
- $p_{|}: X p^{-1}(B_p) \to Y B_p$ ordinary covering space.
- $\omega_p : \pi_1(Y B_p) \to \Sigma_d$ monodromy (p is d-fold).
- p uniquely determined by (Y, B_p, ω_p) , up to homeo.
- $p \text{ simple} \stackrel{\text{def}}{\iff} \{\text{meridians of } B_p\} \stackrel{\omega_p}{\longrightarrow} \{\text{transpositions}\}.$

Some classical results

Theorem (Hilden-Hirsch-Montesinos 1974)

Any closed oriented M^3 is simple 3-fold b.c.

$$p: M^3 \longrightarrow S^3$$

branched over a link $B_p \subset S^3$.

Connections with other structures

- Open book decompositions (Myers 1978).
- Crystallizations (Ferri 1979; Casali, Cavicchioli, Grasselli 1989).
- Contact structures (Gonzalo 1987; Giroux 2000).

Some classical results

Theorem (Piergallini 1995)

Any closed oriented PL M⁴ is a simple 4-fold b.c.

$$p: M^4 \longrightarrow S^4$$

branched over a loc. flat immersed surface $B_p \subset S^4$.

(B_p embedded and d = 5, Iori & Piergallini 2002).

Remark

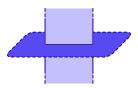
If M^4 admits handle decomp. with no 1-handles can take d=3 and B_p loc. flat except at a conical singularity (Blair, Cahn, Kjuchukova & Meier, to appear).

Ribbon surface

Ribbon surface

$$(S,\partial S)\subset (B^4,S^3)$$

push in of immersed ribbon surface $S' \in S^3$ having only ribbon intersections as possible singularities.



Remark

 $\partial S \subset S^3$ knot or link.

Ribbon fillable branched covering

Simple branched covering

$$p: M^3 \xrightarrow{\text{b.c.}} S^3$$

branched over link that can be extended to simple b.c.

$$q: W^4 \to B^4$$

branched over ribbon surface, $\partial W = M$, $\partial q = q_{|\partial W} = p$, $\partial B_q = B_p$.

One more classical result

Theorem (Montesinos 1978)

Any compact oriented 4-dim 2-handlebody

$$W^4 = H^0 \cup_m H^1 \cup_n H^2$$

is a simple 3-fold b.c.

$$p: W^4 \longrightarrow B^4$$

branched over a ribbon surface $B_p \subset B^4$.

Remark

By definition $p_{|\partial W}: \partial W \to S^3$ is ribbon fillable.

The Cobordism Lemma

Cobordism Lemma (Piergallini-Z. 2019)

 $\forall p_0, p_1: M^3 \to S^3$ d-fold ribbon fillable branched covers, $\forall d \geqslant 5$ $\Rightarrow \exists$ simple covering

$$q: M^3 \times [0,1] \longrightarrow S^3 \times [0,1]$$

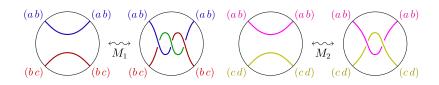
branched over a loc. flat surface, s. t.

$$p_0 = q_{|M \times 0}$$
 and $p_1 = q_{|M \times 1}$.

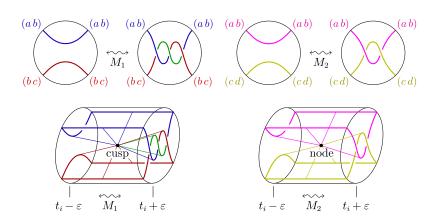
Sketch of proof

 p_0 , $p_1: M^3 \to S^3$ can be related by finitely many Montesinos moves $M_1 \& M_2$ and isotopy.

(Conjectured by Montesinos 1985, proved by Bobtcheva & Piergallini 2012)



Sketch of proof



Start with

$$p_0 \times id: M^3 \times [0,1] \longrightarrow S^3 \times [0,1]$$

add cusps for M_1 's, nodes for M_2 's, movies for isotopy.

Sketch of proof

Removing cusps (*Piergallini 1995*) and nodes (*Iori & Piergallini 2002*) yields the desired cobordism branched covering (here we use ribbon fillable).

Remark

By allowing nodes as singularities of B_q one can take d=4.

Branched coverings of B^4

Theorem (Piergallini-Z. 2019)

 \forall cpt connected orient. PL W^4 with connected ∂W , \forall $d \geqslant 5$, \exists simple d-fold branched covering

$$p: W^4 \longrightarrow B^4$$

with $B_p \subset B^4$ loc. flat surface. We can assume $\partial p \colon \partial W \to S^3$ to coincide with any given ribbon fillable branched covering.

Branched coverings of \mathbb{CP}^2

Theorem (Piergallini-Z. 2021)

For any closed oriented PL M⁴

$$\exists \ \rho \colon M^4 \xrightarrow{b.c.} \mathbb{CP}^2 \iff b_2^+(M^4) \geqslant 1.$$

We can assume $B_p \subset \mathbb{CP}^2$ loc. flat surf. and $d \leqslant 9$.

Remark

$$b_2^{\pm}=(b_2\pm\sigma)/2\in\mathbb{N}.$$

Proof of $\exists p \Rightarrow b_2^+ \geqslant 1$

If \exists *d*-fold b.c.

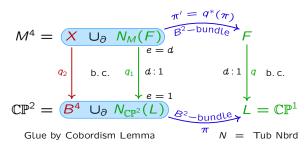
$$p: M^4 \longrightarrow \mathbb{CP}^2$$

isotope $B_p \subset \mathbb{CP}^2$ to be transversal to \mathbb{CP}^1 .

$$F = p^{-1}(\mathbb{CP}^1) \subset M^4$$

$$F \cdot F = d \neq 0 \Rightarrow [F] \neq 0 \text{ in } H_2(M)/\text{Tor.}$$

 \exists orient. connect. surf. $F \subset M^4$ s.t. $F \cdot F \geqslant 1$. Can assume $d = F \cdot F \geqslant 5$ (otherwise take $F' \in 3[F]$).



 $q: F \to \mathbb{CP}^1$ branched over g(F) + d - 1 pairs of points $\Rightarrow \partial q_1$ branched over pairs of Hopf links bounding Hopf bands $\Rightarrow \partial q_1$ ribbon fillable.

$$(1 \ 2)$$
 $(2 \ 3)$ $(d-1 \ d)$

More basic 4-manifolds

Theorem (Piergallini-Z. 2019)

For any closed oriented PL M⁴

$$\exists p: M^4 \xrightarrow{b.c.} N^4$$

with

•
$$N = \#_m \mathbb{CP} \#_n \overline{\mathbb{CP}} \iff b_2^+(M) \geqslant m$$
 and $b_2^-(M) \geqslant n$.

More basic 4-manifolds

Theorem (Piergallini-Z. 2019)

For any closed oriented PL M⁴

$$\exists p: M^4 \xrightarrow{b.c.} N^4$$

with

- $N = \#_m \mathbb{CP} \#_n \overline{\mathbb{CP}} \iff b_2^+(M) \geqslant m \text{ and } b_2^-(M) \geqslant n.$
- $N = \#_n(S^2 \times S^2) \iff b_2^+(M) \geqslant n$ and $b_2^-(M) \geqslant n$.

More basic 4-manifolds

Theorem (Piergallini-Z. 2019)

For any closed oriented PL M⁴

$$\exists p: M^4 \xrightarrow{b.c.} N^4$$

with

- $N = \#_m \mathbb{CP} \#_n \overline{\mathbb{CP}} \iff b_2^+(M) \geqslant m \text{ and } b_2^-(M) \geqslant n.$
- $N = \#_n(S^2 \times S^2) \iff b_2^+(M) \geqslant n$ and $b_2^-(M) \geqslant n$.
- $N = \#_n(S^3 \times S^1) \Longleftrightarrow \pi_1(M) \twoheadrightarrow F_n$.

Application to quasiregular ellipticity

$$b_2^{\pm}(T^4) = 3 \Rightarrow \exists T^4 \xrightarrow{\text{b.c.}} \#_n(S^2 \times S^2) \text{ for } n = 1, 2, 3.$$

Case n = 1 obvious: $T^4 = T^2 \times T^2 \xrightarrow{p \times p} S^2 \times S^2$.

Case n = 2 proved by Rickman (2006).

Case n = 3 not previously known.

Definition

 M^m is quasiregularly elliptic if $\exists f : \mathbb{R}^m \to M^m$ s. t.

$$||Df||^m \leqslant K \det Df$$
.

Corollary

$$\#_n(S^2 \times S^2)$$
 quasiregularly elliptic for $n \le 3$ (False for all $n \ge 4$, Prywes 2019).

Proof.

$$\mathbb{R}^4 \stackrel{\text{cover}}{\longrightarrow} T^4 \stackrel{\text{b.c.}}{\longrightarrow} \#_n(S^2 \times S^2).$$

Pairs (M^4, N^2) with $N \cdot N \neq 0$

Theorem (Piergallini-Z. 2019)

For any closed conn. orient. loc. flat pair (M^4, N^2) s. t.

$$d = |N \cdot N| \geqslant 4$$

there is a simple d-fold covering

$$p: (M^4, N^2) \longrightarrow (\pm \mathbb{CP}^2, \mathbb{CP}^1)$$

branched over a (nodal) surface transversal to \mathbb{CP}^1 , with $\pm = \mathrm{sgn}(N \cdot N)$.

Pairs (M^4, N^2) with $N \cdot N = 0$

Theorem (Piergallini-Z. 2019)

For any closed conn. orient. loc. flat pair (M^4, N^2) s. t.

$$N \cdot N = 0$$

and for any $d \geqslant 4$ there is a simple d-fold covering

$$p: (M^4, N^2) \longrightarrow (S^4, S^2)$$

branched over a (nodal) surface transversal to S^2 .

Special case

 $p: (S^4, N^2) \xrightarrow{\text{b. c.}} (S^4, S^2)$ for every 2-knot $N^2 \subset S^4$.

Theorem (Piergallini-Z. 2019)

For any closed conn. orient. pair (M^4, N^3) there is a d-fold simple b.c.

$$p: (M^4, N^3) \longrightarrow (S^4, S^3).$$

The branch set can be taken an immersed (embedded for $d \ge 5$) surface transversal to $S^3 \subset S^4$.

Remark

If N^3 disconnects M^4 we can assume $N^3 = p^{-1}(S^3)$.

A remarkable case is that of

$$S^3 \cong \Sigma^3 \subset_{\mathsf{PL}} S^4.$$

4D PL Schoenflies Conjecture

$$(S^4, \Sigma^3) \cong (S^4, S^3).$$

Remark

The topological version is well-known to be true (Brown 1960)

$$(S^4, \Sigma^3) \underset{C^0}{\cong} (S^4, S^3).$$

Corollary (Piergallini-Z. 2019)

 $\forall\,S^3\cong \Sigma^3 \ {\underset{PL}\subset}\ S^4$ and $\forall\,d\geqslant 4$ there is a d-fold simple covering

$$p: (S^4, \Sigma^3) \longrightarrow (S^4, S^3)$$

branched over a (nodal) surface transversal to S^3 .

Concluding remarks

- PL = Diff in dim 4 \Rightarrow similar results in the C^{∞} -category.
- Closed symplectic 4-manifolds are coverings of \mathbb{CP}^2 branched over symplectic surface with cusps and nodes (*Auroux 2000*).
- Nodes become removable by assuming d ≥ 5
 ⇒ non-singular branch surface.