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Notion of branched covering

p: X" —=Y"

branched covering <d:ef> p is proper open finite PL map of compact
n-manifolds.

® B, C Y branch set of p: max subspace over which p fails to
be a loc. homeo (codim-2 subcomplex).

p: X —p~1(Bp) = Y — B, ordinary covering space.

wp: (Y — Bp) = X4 monodromy (p is d-fold).

p uniquely determined by (Y, By, wp), up to homeo.

p simple L {meridians of B,} e, {transpositions}.
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Some classical results

Theorem (Hilden-Hirsch-Montesinos 1974)
Any closed oriented M3 is simple 3-fold b.c.

p: M?— 3
branched over a link B, C S3.
Connections with other structures

e Open book decompositions (Myers 1978).

e Crystallizations (Ferri 1979; Casali, Cavicchioli,
Grasselli 1989).

e Contact structures (Gonzalo 1987; Giroux 2000).



Some classical results

Theorem (Piergallini 1995)
Any closed oriented PL M* is a simple 4-fold b.c.

p: M* — S*
branched over a loc. flat immersed surface B, C S*.
(Bp embedded and d =5, lori & Piergallini 2002).

Remark

If M* admits handle decomp. with no 1-handles can take d = 3
and B, loc. flat except at a conical singularity

(Blair, Cahn, Kjuchukova & Meier, to appear).



Ribbon surface

Ribbon surface
(5,05) C (B4, 53)

push in of immersed ribbon surface S’ € S3 having only ribbon
intersections as possible singularities.

Remark
8S ¢ S3 knot or link.



Ribbon fillable branched covering

Simple branched covering

branched over link that can be extended to simple b. c.
qg: W* - B*

branched over ribbon surface, 8W = M, 8q = qiaw = p,



One more classical result

Theorem (Montesinos 1978)
Any compact oriented 4-dim 2-handlebody

W* = H° Uy H' U, H
is a simple 3-fold b.c.
p: W*— B*
branched over a ribbon surface B, C B*.

Remark
By definition pjay : OW — S3 is ribbon fillable.



The Cobordism Lemma

Cobordism Lemma (Piergallini-Z. 2019)

Y po, p1: M3 — S3 d-fold ribbon fillable branched covers, ¥ d > 5
= d simple covering

q: M?x[0,1] — S® x [0, 1]
branched over a loc. flat surface, s. t.

Po = dmxo and p1 = Gux1-



Sketch of proof

po, p1: M3 — S3 can be related by finitely many Montesinos
moves My & M, and isotopy.

(Conjectured by Montesinos 1985,
proved by Bobtcheva & Piergallini 2012)
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Sketch of proof
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Start with
po x id: M3 x [0,1] — S® x [0, 1]

add cusps for My’s, nodes for M>'s, movies for isotopy.



Sketch of proof

Removing cusps (Piergallini 1995) and nodes (lori & Piergallini
2002) yields the desired cobordism branched covering (here we use
ribbon fillable).

Remark
By allowing nodes as singularities of B, one can take d = 4.



Branched coverings of B*

Theorem (Piergallini-Z. 2019)
Y cpt connected orient. PL W* with connected OW, ¥V d > 5,

3 simple d-fold branched covering
p: W4 — B*

with B, C B* loc. flat surface.

We can assume 0p: OW — S3 to coincide with any given ribbon
fillable branched covering.



Branched coverings of CP?

Theorem (Piergallini-Z. 2021)
For any closed oriented PL M#*

Ip: M* 2S5 CP? = bf(M*) > 1.

We can assume B, C CP? loc. flat surf. and d < 9.

Remark
b = (by+0)/2 €N,



Proof of 3p= by > 1

If 3 d-fold b.c.
p: M* — CP?

isotope B, C CPP? to be transversal to CP'.
F =p }CP) c m*

F-F=d#0 = [F]#0in Ha(M)/Tor.



Proof of b > 1= 3p

3 orient. connect. surf. FC M* s.t. F-F>1
Canassume d = F-F >5 (otherwise take F’ € 3[F]).
w = a" ()

/_\\
X Us Ny(F) B*—bundie

e=4d
a2 b.c. gi1|d:1l ad:1|g b.c.

CP? = (B* Up Ngpz(L WL = CP!

Glue by Cobordism Lemma 4 N = Tub Nbrd

q: F — CP* branched over g(F) + d — 1 pairs of points = dq;
branched over pairs of Hopf links bounding Hopf bands = 0¢;
ribbon fillable.

0 - - 0000 -.--00
(12) (23) (d—14)



More basic 4-manifolds
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More basic 4-manifolds

Theorem (Piergallini-Z. 2019)
For any closed oriented PL M*

Jp: M4 2GS N4

with
® N=4#,CP#,CP <= by (M)>=m and b; (M)
* N=4#,(5%x%x52%) < bi(M)=n and by (M) >
o N=#,(S®xS!) < m(M)—> F,.

> n.
n



Application to quasiregular ellipticity

bE(TH =3=3 T4 25 % (52 x S2) forn=1,2,3.

Case n =1 obvious: T4 = T2 x T2 28 g2y 52

Case n = 2 proved by Rickman (2006).

Case n = 3 not previously known.

Definition

M™ is quasiregularly elliptic if 3 f: R™ — M™ s.t
IDf|™ < KdetDf.

Corollary
#,(S? x S?) quasiregularly elliptic for n < 3
(False for all n > 4, Prywes 2019).

Proof.
R4 S T4 DS 4 (52 % 52), 0



Pairs (M*, N?) with N - N # 0

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. loc. flat pair (M*, N?) s. t.

d=|N-N| >4
there is a simple d-fold covering
p: (M* N?) — (£CP?, CP)

branched over a (nodal) surface transversal to CP!, with
+ =sgn(N - N).



Pairs (M*, N?) with N- N =0

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. loc. flat pair (M*, N?) s. t.

N-N=0
and for any d > 4 there is a simple d-fold covering
p: (M* N?) — (5% S?)
branched over a (nodal) surface transversal to S2.

Special case
p:(S* N2) 25 (54, S2) for every 2-knot N2 C S%,



Pairs (M*, N3)

Theorem (Piergallini-Z. 2019)
For any closed conn. orient. pair (M*, N3) there is a d-fold simple
b.c.

p: (M* N3) — (5%, S3).
The branch set can be taken an immersed (embedded for d > 5)
surface transversal to S3 C S*.

Remark
If N3 disconnects M* we can assume N3 = p~1(S3).



Embeddings of S%in S*

A remarkable case is that of

3> 3y3 - g4
PL

4D PL Schoenflies Conjecture

(5% 3) = (5% S3).

PL

Remark
The topological version is well-known to be true (Brown 1960)

(5% 23) = (5% S3).



Embeddings of S%in S*

Corollary (Piergallini-Z. 2019)
vS3 =53 - S* and ¥ d > 4 there is a d-fold simple covering

p: (S* 23 — (5% S®)

branched over a (nodal) surface transversal to S3.



Concluding remarks

® PL = Diff in dim 4 = similar results in the C*-category.

e Closed symplectic 4-manifolds are coverings of CP? branched
over symplectic surface with cusps and nodes (Auroux 2000).

® Nodes become removable by assuming d > 5
= non-singular branch surface.



